Wang Ze, Childress Anna R, Wang Jiongjiong, Detre John A
Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104, USA.
Neuroimage. 2007 Jul 15;36(4):1139-51. doi: 10.1016/j.neuroimage.2007.03.072. Epub 2007 Apr 27.
To explore the multivariate nature of fMRI data and to consider the inter-subject brain response discrepancies, a multivariate and brain response model-free method is fundamentally required. Two such methods are presented in this paper by integrating a machine learning algorithm, the support vector machine (SVM), and the random effect model. Without any brain response modeling, SVM was used to extract a whole brain spatial discriminance map (SDM), representing the brain response difference between the contrasted experimental conditions. Population inference was then obtained through the random effect analysis (RFX) or permutation testing (PMU) on the individual subjects' SDMs. Applied to arterial spin labeling (ASL) perfusion fMRI data, SDM RFX yielded lower false-positive rates in the null hypothesis test and higher detection sensitivity for synthetic activations with varying cluster size and activation strengths, compared to the univariate general linear model (GLM)-based RFX. For a sensory-motor ASL fMRI study, both SDM RFX and SDM PMU yielded similar activation patterns to GLM RFX and GLM PMU, respectively, but with higher t values and cluster extensions at the same significance level. Capitalizing on the absence of temporal noise correlation in ASL data, this study also incorporated PMU in the individual-level GLM and SVM analyses accompanied by group-level analysis through RFX or group-level PMU. Providing inferences on the probability of being activated or deactivated at each voxel, these individual-level PMU-based group analysis methods can be used to threshold the analysis results of GLM RFX, SDM RFX or SDM PMU.
为了探索功能磁共振成像(fMRI)数据的多变量性质,并考虑个体间脑反应差异,从根本上需要一种无多变量和脑反应模型的方法。本文通过整合机器学习算法——支持向量机(SVM)和随机效应模型,提出了两种这样的方法。在没有任何脑反应建模的情况下,SVM被用于提取全脑空间判别图(SDM),该图代表了对比实验条件之间的脑反应差异。然后通过对个体受试者的SDM进行随机效应分析(RFX)或置换检验(PMU)来获得总体推断。与基于单变量一般线性模型(GLM)的RFX相比,将SDM RFX应用于动脉自旋标记(ASL)灌注fMRI数据时,在零假设检验中产生的假阳性率更低,对具有不同簇大小和激活强度的合成激活具有更高的检测灵敏度。对于一项感觉运动ASL fMRI研究,SDM RFX和SDM PMU分别产生了与GLM RFX和GLM PMU相似的激活模式,但在相同的显著性水平下具有更高的t值和簇扩展。利用ASL数据中不存在时间噪声相关性这一特点,本研究还将PMU纳入个体水平的GLM和SVM分析,并通过RFX或组水平的PMU进行组水平分析。这些基于个体水平PMU的组分析方法能够提供每个体素被激活或失活的概率推断,可用于对GLM RFX、SDM RFX或SDM PMU的分析结果进行阈值处理。