Suppr超能文献

基于支持向量机学习的功能磁共振成像数据组分析

Support vector machine learning-based fMRI data group analysis.

作者信息

Wang Ze, Childress Anna R, Wang Jiongjiong, Detre John A

机构信息

Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104, USA.

出版信息

Neuroimage. 2007 Jul 15;36(4):1139-51. doi: 10.1016/j.neuroimage.2007.03.072. Epub 2007 Apr 27.

Abstract

To explore the multivariate nature of fMRI data and to consider the inter-subject brain response discrepancies, a multivariate and brain response model-free method is fundamentally required. Two such methods are presented in this paper by integrating a machine learning algorithm, the support vector machine (SVM), and the random effect model. Without any brain response modeling, SVM was used to extract a whole brain spatial discriminance map (SDM), representing the brain response difference between the contrasted experimental conditions. Population inference was then obtained through the random effect analysis (RFX) or permutation testing (PMU) on the individual subjects' SDMs. Applied to arterial spin labeling (ASL) perfusion fMRI data, SDM RFX yielded lower false-positive rates in the null hypothesis test and higher detection sensitivity for synthetic activations with varying cluster size and activation strengths, compared to the univariate general linear model (GLM)-based RFX. For a sensory-motor ASL fMRI study, both SDM RFX and SDM PMU yielded similar activation patterns to GLM RFX and GLM PMU, respectively, but with higher t values and cluster extensions at the same significance level. Capitalizing on the absence of temporal noise correlation in ASL data, this study also incorporated PMU in the individual-level GLM and SVM analyses accompanied by group-level analysis through RFX or group-level PMU. Providing inferences on the probability of being activated or deactivated at each voxel, these individual-level PMU-based group analysis methods can be used to threshold the analysis results of GLM RFX, SDM RFX or SDM PMU.

摘要

为了探索功能磁共振成像(fMRI)数据的多变量性质,并考虑个体间脑反应差异,从根本上需要一种无多变量和脑反应模型的方法。本文通过整合机器学习算法——支持向量机(SVM)和随机效应模型,提出了两种这样的方法。在没有任何脑反应建模的情况下,SVM被用于提取全脑空间判别图(SDM),该图代表了对比实验条件之间的脑反应差异。然后通过对个体受试者的SDM进行随机效应分析(RFX)或置换检验(PMU)来获得总体推断。与基于单变量一般线性模型(GLM)的RFX相比,将SDM RFX应用于动脉自旋标记(ASL)灌注fMRI数据时,在零假设检验中产生的假阳性率更低,对具有不同簇大小和激活强度的合成激活具有更高的检测灵敏度。对于一项感觉运动ASL fMRI研究,SDM RFX和SDM PMU分别产生了与GLM RFX和GLM PMU相似的激活模式,但在相同的显著性水平下具有更高的t值和簇扩展。利用ASL数据中不存在时间噪声相关性这一特点,本研究还将PMU纳入个体水平的GLM和SVM分析,并通过RFX或组水平的PMU进行组水平分析。这些基于个体水平PMU的组分析方法能够提供每个体素被激活或失活的概率推断,可用于对GLM RFX、SDM RFX或SDM PMU的分析结果进行阈值处理。

相似文献

1
Support vector machine learning-based fMRI data group analysis.基于支持向量机学习的功能磁共振成像数据组分析
Neuroimage. 2007 Jul 15;36(4):1139-51. doi: 10.1016/j.neuroimage.2007.03.072. Epub 2007 Apr 27.
7
Automatic independent component labeling for artifact removal in fMRI.用于功能磁共振成像中去除伪影的自动独立成分标记
Neuroimage. 2008 Feb 1;39(3):1227-45. doi: 10.1016/j.neuroimage.2007.10.013. Epub 2007 Oct 25.

引用本文的文献

4
Sex differences in resting-state functional networks in awake rats.清醒大鼠静息态功能网络的性别差异。
Brain Struct Funct. 2023 Jul;228(6):1411-1423. doi: 10.1007/s00429-023-02657-4. Epub 2023 Jun 1.
7
Explainable AI: A review of applications to neuroimaging data.可解释人工智能:神经影像数据应用综述
Front Neurosci. 2022 Dec 1;16:906290. doi: 10.3389/fnins.2022.906290. eCollection 2022.
10
Patterns and networks of language control in bilingual language production.双语语言产生中的语言控制模式和网络。
Brain Struct Funct. 2021 May;226(4):963-977. doi: 10.1007/s00429-021-02218-7. Epub 2021 Jan 27.

本文引用的文献

1
4
Perfusion fMRI for functional neuroimaging.用于功能神经成像的灌注功能磁共振成像
Int Rev Neurobiol. 2005;66:213-36. doi: 10.1016/S0074-7742(05)66007-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验