Arizona State University-Santa Fe Institute Center for Biosocial Complex Systems, Arizona State University, Tempe, AZ 85281.
Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada.
Proc Natl Acad Sci U S A. 2019 Apr 9;116(15):7226-7231. doi: 10.1073/pnas.1816531116. Epub 2019 Mar 22.
The roundworm exhibits robust escape behavior in response to rapidly rising temperature. The behavior lasts for a few seconds, shows history dependence, involves both sensory and motor systems, and is too complicated to model mechanistically using currently available knowledge. Instead we model the process phenomenologically, and we use the dynamical inference platform to infer the model in a fully automated fashion directly from experimental data. The inferred model requires incorporation of an unobserved dynamical variable and is biologically interpretable. The model makes accurate predictions about the dynamics of the worm behavior, and it can be used to characterize the functional logic of the dynamical system underlying the escape response. This work illustrates the power of modern artificial intelligence to aid in discovery of accurate and interpretable models of complex natural systems.
线虫对快速上升的温度表现出强烈的逃避行为。这种行为持续几秒钟,表现出历史依赖性,涉及感觉和运动系统,而且太复杂,无法使用现有知识进行机械建模。相反,我们从现象上对该过程进行建模,并使用动态推断平台直接从实验数据中以全自动方式推断模型。所推断的模型需要包含一个未被观察到的动态变量,并且具有生物学解释性。该模型可以对蠕虫行为的动力学进行准确预测,并可用于描述逃避反应背后的动态系统的功能逻辑。这项工作说明了现代人工智能在帮助发现复杂自然系统的准确和可解释模型方面的强大功能。