Suppr超能文献

逃避动力学的自动化、预测和可解释推断。

Automated, predictive, and interpretable inference of escape dynamics.

机构信息

Arizona State University-Santa Fe Institute Center for Biosocial Complex Systems, Arizona State University, Tempe, AZ 85281.

Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada.

出版信息

Proc Natl Acad Sci U S A. 2019 Apr 9;116(15):7226-7231. doi: 10.1073/pnas.1816531116. Epub 2019 Mar 22.

Abstract

The roundworm exhibits robust escape behavior in response to rapidly rising temperature. The behavior lasts for a few seconds, shows history dependence, involves both sensory and motor systems, and is too complicated to model mechanistically using currently available knowledge. Instead we model the process phenomenologically, and we use the dynamical inference platform to infer the model in a fully automated fashion directly from experimental data. The inferred model requires incorporation of an unobserved dynamical variable and is biologically interpretable. The model makes accurate predictions about the dynamics of the worm behavior, and it can be used to characterize the functional logic of the dynamical system underlying the escape response. This work illustrates the power of modern artificial intelligence to aid in discovery of accurate and interpretable models of complex natural systems.

摘要

线虫对快速上升的温度表现出强烈的逃避行为。这种行为持续几秒钟,表现出历史依赖性,涉及感觉和运动系统,而且太复杂,无法使用现有知识进行机械建模。相反,我们从现象上对该过程进行建模,并使用动态推断平台直接从实验数据中以全自动方式推断模型。所推断的模型需要包含一个未被观察到的动态变量,并且具有生物学解释性。该模型可以对蠕虫行为的动力学进行准确预测,并可用于描述逃避反应背后的动态系统的功能逻辑。这项工作说明了现代人工智能在帮助发现复杂自然系统的准确和可解释模型方面的强大功能。

相似文献

1
Automated, predictive, and interpretable inference of escape dynamics.逃避动力学的自动化、预测和可解释推断。
Proc Natl Acad Sci U S A. 2019 Apr 9;116(15):7226-7231. doi: 10.1073/pnas.1816531116. Epub 2019 Mar 22.
3
Step response analysis of thermotaxis in Caenorhabditis elegans.秀丽隐杆线虫趋温性的阶跃响应分析
J Neurosci. 2003 May 15;23(10):4369-77. doi: 10.1523/JNEUROSCI.23-10-04369.2003.
5
The neuroethology of C. elegans escape.秀丽隐杆线虫逃避行为的神经行为学研究。
Curr Opin Neurobiol. 2012 Apr;22(2):187-93. doi: 10.1016/j.conb.2011.12.007. Epub 2012 Jan 4.
10
How the worm turns, in molecular detail.蠕虫如何转变,分子层面的细节。
PLoS Biol. 2013;11(4):e1001526. doi: 10.1371/journal.pbio.1001526. Epub 2013 Apr 2.

引用本文的文献

2
Distilling identifiable and interpretable dynamic models from biological data.从生物数据中提取可识别和可解释的动态模型。
PLoS Comput Biol. 2023 Oct 18;19(10):e1011014. doi: 10.1371/journal.pcbi.1011014. eCollection 2023 Oct.
4
A lexical approach for identifying behavioural action sequences.一种用于识别行为动作序列的词汇方法。
PLoS Comput Biol. 2022 Jan 10;18(1):e1009672. doi: 10.1371/journal.pcbi.1009672. eCollection 2022 Jan.
5
Tracking changes in behavioural dynamics using prediction error.使用预测误差跟踪行为动态变化。
PLoS One. 2021 May 12;16(5):e0251053. doi: 10.1371/journal.pone.0251053. eCollection 2021.
6
Inferring the structures of signaling motifs from paired dynamic traces of single cells.从单细胞的配对动态轨迹推断信号基序的结构。
PLoS Comput Biol. 2021 Feb 4;17(2):e1008657. doi: 10.1371/journal.pcbi.1008657. eCollection 2021 Feb.
7
Making Sense of Computational Psychiatry.理解计算精神病学。
Int J Neuropsychopharmacol. 2020 May 27;23(5):339-347. doi: 10.1093/ijnp/pyaa013.

本文引用的文献

2
φ-evo: A program to evolve phenotypic models of biological networks.φ-evo:用于进化生物网络表型模型的程序。
PLoS Comput Biol. 2018 Jun 11;14(6):e1006244. doi: 10.1371/journal.pcbi.1006244. eCollection 2018 Jun.
4
The extraordinary AFD thermosensor of C. elegans.秀丽隐杆线虫的非凡 AFD 热传感器。
Pflugers Arch. 2018 May;470(5):839-849. doi: 10.1007/s00424-017-2089-5. Epub 2017 Dec 8.
5
Mechanism of bidirectional thermotaxis in .双向趋热性的机制。
Elife. 2017 Aug 3;6:e26607. doi: 10.7554/eLife.26607.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验