Yu Wentao, Abdelaleem Eslam, Nemenman Ilya, Burton Justin C
Department of Physics, Emory University, Atlanta, GA 30322.
Department of Biology and Initiative for Theory and Modeling of Living Systems, Emory University, Atlanta, GA 30322.
Proc Natl Acad Sci U S A. 2025 Aug 5;122(31):e2505725122. doi: 10.1073/pnas.2505725122. Epub 2025 Jul 31.
Dusty plasma is a mixture of ions, electrons, and macroscopic charged particles that is commonly found in space and planetary environments. The particles interact through Coulomb forces mediated by the surrounding plasma, and as a result, the effective forces between particles can be nonconservative and nonreciprocal. Machine learning (ML) models are a promising route to learn these complex forces, yet their structure should match the underlying physical constraints to provide useful insight. Here, we demonstrate and experimentally validate an ML approach that incorporates physical intuition to infer force laws in a laboratory dusty plasma. Trained on 3D particle trajectories, the model accounts for inherent symmetries, nonidentical particles, and learns the effective nonreciprocal forces between particles with exquisite accuracy ([Formula: see text] 0.99). We validate the model by inferring particle masses in two independent yet consistent ways. The model's accuracy enables precise measurements of particle charge and screening length, identifying large deviations from common theoretical assumptions. Our ability to identify unknown physics from experimental data demonstrates how ML-powered approaches can guide new routes of scientific discovery in many-body systems. Furthermore, we anticipate our ML approach to be a starting point for inferring laws from dynamics in a wide range of many-body systems, from colloids to living organisms.
尘埃等离子体是离子、电子和宏观带电粒子的混合物,常见于太空和行星环境中。粒子通过周围等离子体介导的库仑力相互作用,因此,粒子之间的有效力可能是非保守和非互易的。机器学习(ML)模型是了解这些复杂力的一条有前途的途径,但其结构应与潜在的物理约束相匹配,以提供有用的见解。在这里,我们展示并通过实验验证了一种ML方法,该方法结合物理直觉来推断实验室尘埃等离子体中的力定律。该模型基于三维粒子轨迹进行训练,考虑了固有对称性、非相同粒子,并以极高的精度([公式:见正文]0.99)学习粒子之间的有效非互易力。我们通过两种独立但一致的方式推断粒子质量来验证该模型。该模型的准确性使得能够精确测量粒子电荷和屏蔽长度,发现与常见理论假设的巨大偏差。我们从实验数据中识别未知物理的能力表明,基于ML的方法可以如何指导多体系统中的新科学发现途径。此外,我们预计我们的ML方法将成为从各种多体系统(从胶体到生物体)的动力学中推断定律的起点。