Suppr超能文献

3D 打印胶原/壳聚糖支架改善脊髓损伤后的轴突再生和神经功能恢复。

3D printing collagen/chitosan scaffold ameliorated axon regeneration and neurological recovery after spinal cord injury.

机构信息

Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Logistics University of PAPF, Tianjin 300162, China.

Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.

出版信息

J Biomed Mater Res A. 2019 Sep;107(9):1898-1908. doi: 10.1002/jbm.a.36675. Epub 2019 Apr 14.

Abstract

Spinal cord injury (SCI) is a disaster that can cause severe motor, sensory, and functional disorders. Implanting biomaterials have been regarded as hopeful strategies to restore neurological function. However, no optimized scaffold has been available. In this study, a novel 3D printing technology was used to fabricate the scaffold with designed structure. The composite biomaterials of collagen and chitosan were also adopted to balance both compatibility and strength. Female Sprague-Dawley rats were subjected to a T8 complete-transection SCI model. Scaffolds of C/C (collagen/chitosan scaffold with freeze-drying technology) or 3D-C/C (collagen/chitosan scaffold with 3D printing technology) were implanted into the lesion. Compared with SCI or C/C group, 3D-C/C implants significantly promoted locomotor function with the elevation in Basso-Beattie-Bresnahan (BBB) score and angle of inclined plane. Decreased latency and increased amplitude were observed both in motor-evoked potential and somatosensory-evoked potential in 3D-C/C group compared with SCI or C/C group, which further demonstrated the improvement of neurological recovery. Fiber tracking of diffusion tensor imaging (DTI) showed the most fibers traversing the lesion in 3D-C/C group. Meanwhile, we observed that the correlations between the locomotor (BBB score or angle of inclined plane) and the DTI parameters (fractional anisotropy values) were positive. Although C/C implants markedly enhanced biotin dextran amine (BDA)-positive neural profiles compared with SCI group, rats implanted with 3D-C/C scaffold displayed the largest degree of BDA profiles regeneration. Collectively, our 3D-C/C scaffolds demonstrated significant therapeutic effects on rat complete-transected spinal cord model, which provides a promising and innovative therapeutic approach for SCI. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1898-1908, 2019.

摘要

脊髓损伤 (SCI) 是一种可能导致严重运动、感觉和功能障碍的灾难。植入生物材料已被视为恢复神经功能的有希望的策略。然而,还没有优化的支架可用。在这项研究中,使用了一种新的 3D 打印技术来制造具有设计结构的支架。还采用了胶原蛋白和壳聚糖的复合生物材料来平衡相容性和强度。雌性 Sprague-Dawley 大鼠接受 T8 完全横断 SCI 模型。将 C/C(具有冻干技术的胶原蛋白/壳聚糖支架)或 3D-C/C(具有 3D 打印技术的胶原蛋白/壳聚糖支架)支架植入病变部位。与 SCI 或 C/C 组相比,3D-C/C 植入物显著促进了运动功能,Basso-Beattie-Bresnahan (BBB) 评分和斜面角度升高。与 SCI 或 C/C 组相比,运动诱发电位和体感诱发电位中的潜伏期降低,幅度增加,进一步表明神经恢复得到改善。扩散张量成像 (DTI) 的纤维跟踪显示,3D-C/C 组中穿过病变的纤维最多。同时,我们观察到运动(BBB 评分或斜面角度)和 DTI 参数(各向异性分数值)之间存在正相关。尽管 C/C 植入物与 SCI 组相比显著增强了生物素葡聚糖胺(BDA)阳性神经谱,但植入 3D-C/C 支架的大鼠显示出最大程度的 BDA 谱再生。总之,我们的 3D-C/C 支架对大鼠完全横断脊髓模型具有显著的治疗效果,为 SCI 提供了一种有前途和创新的治疗方法。 © 2019 Wiley Periodicals, Inc. J 生物材料 Res 部分 A:107A:1898-1908, 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验