Parietal Team, INRIA/CEA, Paris-Saclay University, 1 rue Honoré d'Estienne d'Orves, Palaiseau, 91120, France.
Med Image Anal. 2019 May;54:138-148. doi: 10.1016/j.media.2019.03.001. Epub 2019 Mar 15.
Estimating covariances from functional Magnetic Resonance Imaging at rest (r-fMRI) can quantify interactions between brain regions. Also known as brain functional connectivity, it reflects inter-subject variations in behavior and cognition, and characterizes neuropathologies. Yet, with noisy and short time-series, as in r-fMRI, covariance estimation is challenging and calls for penalization, as with shrinkage approaches. We introduce population shrinkage of covariance estimator (PoSCE) : a covariance estimator that integrates prior knowledge of covariance distribution over a large population, leading to a non-isotropic shrinkage. The shrinkage is tailored to the Riemannian geometry of symmetric positive definite matrices. It is coupled with a probabilistic modeling of the individual and population covariance distributions. Experiments on two large r-fMRI datasets (HCP n=815, CamCAN n=626) show that PoSCE has a better bias-variance trade-off than existing covariance estimates: this estimator relates better functional-connectivity measures to cognition while capturing well intra-subject functional connectivity.
从静息态功能磁共振成像(r-fMRI)中估计协方差可以量化脑区之间的相互作用。也称为脑功能连接,它反映了行为和认知的个体间变化,并描述了神经病理学。然而,由于 r-fMRI 中的时间序列较短且存在噪声,协方差估计具有挑战性,需要进行惩罚,例如采用收缩方法。我们提出了协方差估计量的群体收缩(PoSCE):一种协方差估计量,它整合了对大群体协方差分布的先验知识,导致非各向同性收缩。收缩是根据对称正定矩阵的黎曼几何量身定制的。它与个体和群体协方差分布的概率模型相结合。在两个大型 r-fMRI 数据集(HCP n=815,CamCAN n=626)上的实验表明,PoSCE 比现有的协方差估计具有更好的偏差-方差权衡:该估计器在捕捉到个体内功能连接的同时,将功能连接测量更好地与认知相关联。