Suppr超能文献

高维协方差矩阵的主回归

Principal regression for high dimensional covariance matrices.

作者信息

Zhao Yi, Caffo Brian, Luo Xi

机构信息

Department of Biostatistics and Health Data Science, Indiana University School of Medicine.

Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health.

出版信息

Electron J Stat. 2021;15(2):4192-4235. doi: 10.1214/21-ejs1887. Epub 2021 Sep 14.

Abstract

This manuscript presents an approach to perform generalized linear regression with multiple high dimensional covariance matrices as the outcome. In many areas of study, such as resting-state functional magnetic resonance imaging (fMRI) studies, this type of regression can be utilized to characterize variation in the covariance matrices across units. Model parameters are estimated by maximizing a likelihood formulation of a generalized linear model, conditioning on a well-conditioned linear shrinkage estimator for multiple covariance matrices, where the shrinkage coefficients are proposed to be shared across matrices. Theoretical studies demonstrate that the proposed covariance matrix estimator is optimal achieving the uniformly minimum quadratic loss asymptotically among all linear combinations of the identity matrix and the sample covariance matrix. Under certain regularity conditions, the proposed estimator of the model parameters is consistent. The superior performance of the proposed approach over existing methods is illustrated through simulation studies. Implemented to a resting-state fMRI study acquired from the Alzheimer's Disease Neuroimaging Initiative, the proposed approach identified a brain network within which functional connectivity is significantly associated with Apolipoprotein E 4, a strong genetic marker for Alzheimer's disease.

摘要

本手稿提出了一种以多个高维协方差矩阵为结果进行广义线性回归的方法。在许多研究领域,如静息态功能磁共振成像(fMRI)研究中,这种类型的回归可用于刻画各单元协方差矩阵的变化。通过最大化广义线性模型的似然公式来估计模型参数,该公式以多个协方差矩阵的良态线性收缩估计量为条件,其中收缩系数被提议在各矩阵间共享。理论研究表明,所提出的协方差矩阵估计量在单位矩阵和样本协方差矩阵的所有线性组合中渐近地实现了一致最小二次损失,是最优的。在某些正则条件下,所提出的模型参数估计量是一致的。通过模拟研究说明了所提方法相对于现有方法的优越性能。将该方法应用于从阿尔茨海默病神经影像倡议获取的静息态fMRI研究中,所提方法识别出了一个脑网络,其中功能连接与载脂蛋白E4显著相关,载脂蛋白E4是阿尔茨海默病的一个强遗传标记。

相似文献

1
Principal regression for high dimensional covariance matrices.
Electron J Stat. 2021;15(2):4192-4235. doi: 10.1214/21-ejs1887. Epub 2021 Sep 14.
2
Longitudinal regression of covariance matrix outcomes.
Biostatistics. 2024 Apr 15;25(2):385-401. doi: 10.1093/biostatistics/kxac045.
3
Shrinkage estimators for covariance matrices.
Biometrics. 2001 Dec;57(4):1173-84. doi: 10.1111/j.0006-341x.2001.01173.x.
4
Covariate Assisted Principal regression for covariance matrix outcomes.
Biostatistics. 2021 Jul 17;22(3):629-645. doi: 10.1093/biostatistics/kxz057.
5
Modeling the Cholesky factors of covariance matrices of multivariate longitudinal data.
J Multivar Anal. 2016 Mar;145:87-100. doi: 10.1016/j.jmva.2015.11.014. Epub 2015 Dec 14.
6
Condition Number Regularized Covariance Estimation.
J R Stat Soc Series B Stat Methodol. 2013 Jun 1;75(3):427-450. doi: 10.1111/j.1467-9868.2012.01049.x.
7
Minimax Rate-optimal Estimation of High-dimensional Covariance Matrices with Incomplete Data.
J Multivar Anal. 2016 Sep;150:55-74. doi: 10.1016/j.jmva.2016.05.002. Epub 2016 May 19.
9
HYPOTHESIS TESTING ON LINEAR STRUCTURES OF HIGH DIMENSIONAL COVARIANCE MATRIX.
Ann Stat. 2019;47(6):3300-3334. doi: 10.1214/18-AOS1779. Epub 2019 Oct 31.
10
Population shrinkage of covariance (PoSCE) for better individual brain functional-connectivity estimation.
Med Image Anal. 2019 May;54:138-148. doi: 10.1016/j.media.2019.03.001. Epub 2019 Mar 15.

引用本文的文献

1
Covariance-on-covariance regression.
Biometrics. 2025 Jul 3;81(3). doi: 10.1093/biomtc/ujaf097.
2
Bayesian estimation of covariate assisted principal regression for brain functional connectivity.
Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxae023.
3
Longitudinal regression of covariance matrix outcomes.
Biostatistics. 2024 Apr 15;25(2):385-401. doi: 10.1093/biostatistics/kxac045.

本文引用的文献

1
Sparse Principal Component based High-Dimensional Mediation Analysis.
Comput Stat Data Anal. 2020 Feb;142. doi: 10.1016/j.csda.2019.106835. Epub 2019 Sep 3.
2
Optimising network modelling methods for fMRI.
Neuroimage. 2020 May 1;211:116604. doi: 10.1016/j.neuroimage.2020.116604. Epub 2020 Feb 13.
3
Covariate Assisted Principal regression for covariance matrix outcomes.
Biostatistics. 2021 Jul 17;22(3):629-645. doi: 10.1093/biostatistics/kxz057.
4
Population shrinkage of covariance (PoSCE) for better individual brain functional-connectivity estimation.
Med Image Anal. 2019 May;54:138-148. doi: 10.1016/j.media.2019.03.001. Epub 2019 Mar 15.
5
ApoE4: an emerging therapeutic target for Alzheimer's disease.
BMC Med. 2019 Mar 20;17(1):64. doi: 10.1186/s12916-019-1299-4.
6
Improved estimation of subject-level functional connectivity using full and partial correlation with empirical Bayes shrinkage.
Neuroimage. 2018 May 15;172:478-491. doi: 10.1016/j.neuroimage.2018.01.029. Epub 2018 Feb 14.
7
Multivariate Heteroscedasticity Models for Functional Brain Connectivity.
Front Neurosci. 2017 Dec 12;11:696. doi: 10.3389/fnins.2017.00696. eCollection 2017.
8
Resting-state network dysfunction in Alzheimer's disease: A systematic review and meta-analysis.
Alzheimers Dement (Amst). 2017 Apr 18;8:73-85. doi: 10.1016/j.dadm.2017.03.007. eCollection 2017.
9
Functional connectivity changes differ in early and late-onset Alzheimer's disease.
Hum Brain Mapp. 2014 Jul;35(7):2978-94. doi: 10.1002/hbm.22379. Epub 2013 Oct 5.
10
Interpretable whole-brain prediction analysis with GraphNet.
Neuroimage. 2013 May 15;72:304-21. doi: 10.1016/j.neuroimage.2012.12.062. Epub 2013 Jan 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验