Suppr超能文献

基于状态转换因子模型估计 fMRI 中的动态连通性状态。

Estimating Dynamic Connectivity States in fMRI Using Regime-Switching Factor Models.

出版信息

IEEE Trans Med Imaging. 2018 Apr;37(4):1011-1023. doi: 10.1109/TMI.2017.2780185.

Abstract

We consider the challenges in estimating the state-related changes in brain connectivity networks with a large number of nodes. Existing studies use the sliding-window analysis or time-varying coefficient models, which are unable to capture both smooth and abrupt changes simultaneously, and rely on ad-hoc approaches to the high-dimensional estimation. To overcome these limitations, we propose a Markov-switching dynamic factor model, which allows the dynamic connectivity states in functional magnetic resonance imaging (fMRI) data to be driven by lower-dimensional latent factors. We specify a regime-switching vector autoregressive (SVAR) factor process to quantity the time-varying directed connectivity. The model enables a reliable, data-adaptive estimation of change-points of connectivity regimes and the massive dependencies associated with each regime. We develop a three-step estimation procedure: 1) extracting the factors using principal component analysis, 2) identifying connectivity regimes in a low-dimensional subspace based on the factor-based SVAR model, and 3) constructing high-dimensional state connectivity metrics based on the subspace estimates. Simulation results show that our estimator outperforms -means clustering of time-windowed coefficients, providing more accurate estimate of time-evolving connectivity. It achieves percentage of reduction in mean squared error by 60% when the network dimension is comparable to the sample size. When applied to the resting-state fMRI data, our method successfully identifies modular organization in the resting-statenetworksin consistencywith other studies. It further reveals changes in brain states with variations across subjects and distinct large-scale directed connectivity patterns across states.

摘要

我们考虑了在具有大量节点的情况下估计与状态相关的脑连接网络变化的挑战。现有研究使用滑动窗口分析或时变系数模型,这些方法无法同时捕捉到平滑和突然的变化,并且依赖于针对高维估计的特定方法。为了克服这些限制,我们提出了一种马尔可夫切换动态因子模型,该模型允许功能磁共振成像 (fMRI) 数据中的动态连接状态由低维潜在因子驱动。我们指定了一个状态切换向量自回归 (SVAR) 因子过程来量化时变有向连接。该模型能够可靠地、自适应地估计连接状态的变化点和与每个状态相关的大量依赖性。我们开发了一个三步估计过程:1) 使用主成分分析提取因子,2) 根据基于因子的 SVAR 模型在低维子空间中识别连接状态,3) 根据子空间估计构建高维状态连接指标。仿真结果表明,我们的估计器优于基于时间窗口系数的平均值聚类,提供了更准确的时变连接估计。当网络维度与样本大小相当时,它可以将均方误差降低 60%。当应用于静息状态 fMRI 数据时,我们的方法成功地识别了静息状态网络中的模块组织,与其他研究一致。它进一步揭示了不同个体之间大脑状态的变化和不同状态之间的明显的大规模有向连接模式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验