Suppr超能文献

个体和植入电极的灵长类动物对侵入性电脑刺激的一致线性和非线性反应。

Consistent linear and non-linear responses to invasive electrical brain stimulation across individuals and primate species with implanted electrodes.

机构信息

Nayef Al-Rodhan Laboratories, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA.

Nayef Al-Rodhan Laboratories, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.

出版信息

Brain Stimul. 2019 Jul-Aug;12(4):877-892. doi: 10.1016/j.brs.2019.03.007. Epub 2019 Mar 11.

Abstract

BACKGROUND

Electrical neuromodulation via implanted electrodes is used in treating numerous neurological disorders, yet our knowledge of how different brain regions respond to varying stimulation parameters is sparse.

OBJECTIVE/HYPOTHESIS: We hypothesized that the neural response to electrical stimulation is both region-specific and non-linearly related to amplitude and frequency.

METHODS

We examined evoked neural responses following 400 ms trains of 10-400 Hz electrical stimulation ranging from 0.1 to 10 mA. We stimulated electrodes implanted in cingulate cortex (dorsal anterior cingulate and rostral anterior cingulate) and subcortical regions (nucleus accumbens, amygdala) of non-human primates (NHP, N = 4) and patients with intractable epilepsy (N = 15) being monitored via intracranial electrodes. Recordings were performed in prefrontal, subcortical, and temporal lobe locations.

RESULTS

In subcortical regions as well as dorsal and rostral anterior cingulate cortex, response waveforms depended non-linearly on frequency (Pearson's linear correlation r < 0.39), but linearly on current (r > 0.58). These relationships between location, and input-output characteristics were similar in homologous brain regions with average Pearson's linear correlation values r > 0.75 between species and linear correlation values between participants r > 0.75 across frequency and current values per brain region. Evoked waveforms could be described by three main principal components (PCs) which allowed us to successfully predict response waveforms across individuals and across frequencies using PC strengths as functions of current and frequency using brain region specific regression models.

CONCLUSIONS

These results provide a framework for creation of an atlas of input-output relationships which could be used in the principled selection of stimulation parameters per brain region.

摘要

背景

通过植入电极进行电神经调节用于治疗多种神经疾病,但我们对不同脑区如何响应不同刺激参数的了解还很匮乏。

目的/假设:我们假设电刺激的神经反应既是区域特异性的,又与幅度和频率呈非线性关系。

方法

我们检查了 400ms 内 10-400Hz 电刺激(范围为 0.1-10mA)的 10-400Hz 电刺激的诱发神经反应。我们刺激了植入非人类灵长类动物(NHP,N=4)和难治性癫痫患者(N=15)的扣带回皮层(背侧前扣带回和前扣带回)和皮质下区域(伏隔核、杏仁核)的电极。记录是在额皮质、皮质下和颞叶位置进行的。

结果

在皮质下区域以及背侧和前扣带回皮层,反应波形与频率呈非线性关系(Pearson 线性相关 r<0.39),但与电流呈线性关系(r>0.58)。这些位置与输入-输出特征之间的关系在同源脑区中相似,种间平均 Pearson 线性相关值 r>0.75,每个脑区的个体间线性相关值 r>0.75 跨频率和电流值。诱发波形可以用三个主要主成分(PC)来描述,这使得我们能够使用 PC 强度作为电流和频率的函数,使用大脑区域特定的回归模型,成功地在个体之间和频率之间预测反应波形。

结论

这些结果为创建输入-输出关系图谱提供了一个框架,该图谱可用于根据大脑区域的原则选择刺激参数。

相似文献

2
Cingulate cortex function and multi-modal connectivity mapped using intracranial stimulation.
Neuroimage. 2020 Oct 15;220:117059. doi: 10.1016/j.neuroimage.2020.117059. Epub 2020 Jun 17.
4
Manipulation of Subcortical and Deep Cortical Activity in the Primate Brain Using Transcranial Focused Ultrasound Stimulation.
Neuron. 2019 Mar 20;101(6):1109-1116.e5. doi: 10.1016/j.neuron.2019.01.019. Epub 2019 Feb 11.
5
The effects of direct brain stimulation in humans depend on frequency, amplitude, and white-matter proximity.
Brain Stimul. 2020 Sep-Oct;13(5):1183-1195. doi: 10.1016/j.brs.2020.05.009. Epub 2020 May 21.
6
Human Left Anterior Cingulate Stimulation Elicits a Reproducible Micturition Response.
Stereotact Funct Neurosurg. 2019;97(4):278-281. doi: 10.1159/000503886. Epub 2019 Nov 21.
8
Characterizing and predicting cortical evoked responses to direct electrical stimulation of the human brain.
Brain Stimul. 2020 Sep-Oct;13(5):1218-1225. doi: 10.1016/j.brs.2020.05.001. Epub 2020 Jun 8.
10
Mapping of cingulate motor function by cortical stimulation.
Epileptic Disord. 2013 Sep;15(3):333-7. doi: 10.1684/epd.2013.0595.

引用本文的文献

1
Why does invasive brain stimulation sometimes improve memory and sometimes impair it?
PLoS Biol. 2024 Oct 25;22(10):e3002894. doi: 10.1371/journal.pbio.3002894. eCollection 2024 Oct.
2
The Neurostimulationist will see you now: prescribing direct electrical stimulation therapies for the human brain in epilepsy and beyond.
Front Hum Neurosci. 2024 Sep 4;18:1439541. doi: 10.3389/fnhum.2024.1439541. eCollection 2024.
3
Theta-burst direct electrical stimulation remodels human brain networks.
Nat Commun. 2024 Aug 14;15(1):6982. doi: 10.1038/s41467-024-51443-1.
4
Prefrontal network engagement by deep brain stimulation in limbic hubs.
Front Hum Neurosci. 2024 Jan 12;17:1291315. doi: 10.3389/fnhum.2023.1291315. eCollection 2023.
5
Spatial and amplitude dynamics of neurostimulation: Insights from the acute intrahippocampal kainate seizure mouse model.
Epilepsia Open. 2024 Feb;9(1):210-222. doi: 10.1002/epi4.12861. Epub 2023 Nov 30.
6
Neurophysiological mechanisms of deep brain stimulation across spatiotemporal resolutions.
Brain. 2023 Nov 2;146(11):4456-4468. doi: 10.1093/brain/awad239.
7
Modular pipeline for reconstruction and localization of implanted intracranial ECoG and sEEG electrodes.
PLoS One. 2023 Jul 7;18(7):e0287921. doi: 10.1371/journal.pone.0287921. eCollection 2023.
8
Stimulation to probe, excite, and inhibit the epileptic brain.
Epilepsia. 2023 Dec;64 Suppl 3(Suppl 3):S49-S61. doi: 10.1111/epi.17640. Epub 2023 May 18.
10
Quantitative approaches to guide epilepsy surgery from intracranial EEG.
Brain. 2023 Jun 1;146(6):2248-2258. doi: 10.1093/brain/awad007.

本文引用的文献

1
A neural mass model to predict electrical stimulation evoked responses in human and non-human primate brain.
J Neural Eng. 2018 Dec;15(6):066012. doi: 10.1088/1741-2552/aae136. Epub 2018 Sep 13.
3
Deep Brain Stimulation in Psychiatry: Mechanisms, Models, and Next-Generation Therapies.
Psychiatr Clin North Am. 2018 Sep;41(3):373-383. doi: 10.1016/j.psc.2018.04.003. Epub 2018 Jul 9.
4
On the importance of precise electrode placement for targeted transcranial electric stimulation.
Neuroimage. 2018 Nov 1;181:560-567. doi: 10.1016/j.neuroimage.2018.07.027. Epub 2018 Jul 25.
6
Closing the Loop on Deep Brain Stimulation for Treatment-Resistant Depression.
Front Neurosci. 2018 Mar 21;12:175. doi: 10.3389/fnins.2018.00175. eCollection 2018.
8
Multi-Scale Computational Models for Electrical Brain Stimulation.
Front Hum Neurosci. 2017 Oct 26;11:515. doi: 10.3389/fnhum.2017.00515. eCollection 2017.
9
Transcranial magnetic stimulation in basic and clinical neuroscience: A comprehensive review of fundamental principles and novel insights.
Neurosci Biobehav Rev. 2017 Dec;83:381-404. doi: 10.1016/j.neubiorev.2017.10.006. Epub 2017 Oct 13.
10
The development and modelling of devices and paradigms for transcranial magnetic stimulation.
Int Rev Psychiatry. 2017 Apr;29(2):115-145. doi: 10.1080/09540261.2017.1305949. Epub 2017 Apr 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验