Nayef Al-Rodhan Laboratories, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA.
Nayef Al-Rodhan Laboratories, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
Brain Stimul. 2019 Jul-Aug;12(4):877-892. doi: 10.1016/j.brs.2019.03.007. Epub 2019 Mar 11.
Electrical neuromodulation via implanted electrodes is used in treating numerous neurological disorders, yet our knowledge of how different brain regions respond to varying stimulation parameters is sparse.
OBJECTIVE/HYPOTHESIS: We hypothesized that the neural response to electrical stimulation is both region-specific and non-linearly related to amplitude and frequency.
We examined evoked neural responses following 400 ms trains of 10-400 Hz electrical stimulation ranging from 0.1 to 10 mA. We stimulated electrodes implanted in cingulate cortex (dorsal anterior cingulate and rostral anterior cingulate) and subcortical regions (nucleus accumbens, amygdala) of non-human primates (NHP, N = 4) and patients with intractable epilepsy (N = 15) being monitored via intracranial electrodes. Recordings were performed in prefrontal, subcortical, and temporal lobe locations.
In subcortical regions as well as dorsal and rostral anterior cingulate cortex, response waveforms depended non-linearly on frequency (Pearson's linear correlation r < 0.39), but linearly on current (r > 0.58). These relationships between location, and input-output characteristics were similar in homologous brain regions with average Pearson's linear correlation values r > 0.75 between species and linear correlation values between participants r > 0.75 across frequency and current values per brain region. Evoked waveforms could be described by three main principal components (PCs) which allowed us to successfully predict response waveforms across individuals and across frequencies using PC strengths as functions of current and frequency using brain region specific regression models.
These results provide a framework for creation of an atlas of input-output relationships which could be used in the principled selection of stimulation parameters per brain region.
通过植入电极进行电神经调节用于治疗多种神经疾病,但我们对不同脑区如何响应不同刺激参数的了解还很匮乏。
目的/假设:我们假设电刺激的神经反应既是区域特异性的,又与幅度和频率呈非线性关系。
我们检查了 400ms 内 10-400Hz 电刺激(范围为 0.1-10mA)的 10-400Hz 电刺激的诱发神经反应。我们刺激了植入非人类灵长类动物(NHP,N=4)和难治性癫痫患者(N=15)的扣带回皮层(背侧前扣带回和前扣带回)和皮质下区域(伏隔核、杏仁核)的电极。记录是在额皮质、皮质下和颞叶位置进行的。
在皮质下区域以及背侧和前扣带回皮层,反应波形与频率呈非线性关系(Pearson 线性相关 r<0.39),但与电流呈线性关系(r>0.58)。这些位置与输入-输出特征之间的关系在同源脑区中相似,种间平均 Pearson 线性相关值 r>0.75,每个脑区的个体间线性相关值 r>0.75 跨频率和电流值。诱发波形可以用三个主要主成分(PC)来描述,这使得我们能够使用 PC 强度作为电流和频率的函数,使用大脑区域特定的回归模型,成功地在个体之间和频率之间预测反应波形。
这些结果为创建输入-输出关系图谱提供了一个框架,该图谱可用于根据大脑区域的原则选择刺激参数。