Suppr超能文献

男性与女性的大脑差异:来自深度学习的证据。

Brain Differences Between Men and Women: Evidence From Deep Learning.

作者信息

Xin Jiang, Zhang Yaoxue, Tang Yan, Yang Yuan

机构信息

School of Computer Science and Engineering, Central South University, Changsha, China.

Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.

出版信息

Front Neurosci. 2019 Mar 8;13:185. doi: 10.3389/fnins.2019.00185. eCollection 2019.

Abstract

Do men and women have different brains? Previous neuroimage studies sought to answer this question based on morphological difference between specific brain regions, reporting unfortunately conflicting results. In the present study, we aim to use a deep learning technique to address this challenge based on a large open-access, diffusion MRI database recorded from 1,065 young healthy subjects, including 490 men and 575 women healthy subjects. Different from commonly used 2D Convolutional Neural Network (CNN), we proposed a 3D CNN method with a newly designed structure including three hidden layers in cascade with a linear layer and a terminal Softmax layer. The proposed 3D CNN was applied to the maps of factional anisotropy (FA) in the whole-brain as well as specific brain regions. The entropy measure was applied to the lowest-level image features extracted from the first hidden layer to examine the difference of brain structure complexity between men and women. The obtained results compared with the results from using the Support Vector Machine (SVM) and Tract-Based Spatial Statistics (TBSS). The proposed 3D CNN yielded a better classification result (93.3%) than the SVM (78.2%) on the whole-brain FA images, indicating gender-related differences likely exist in the whole-brain range. Moreover, high classification accuracies are also shown in several specific brain regions including the left precuneus, the left postcentral gyrus, the left cingulate gyrus, the right orbital gyrus of frontal lobe, and the left occipital thalamus in the gray matter, and middle cerebellum peduncle, genu of corpus callosum, the right anterior corona radiata, the right superior corona radiata and the left anterior limb of internal capsule in the while matter. This study provides a new insight into the structure difference between men and women, which highlights the importance of considering sex as a biological variable in brain research.

摘要

男性和女性的大脑不同吗?以往的神经影像研究试图根据特定脑区之间的形态差异来回答这个问题,但遗憾的是报告结果相互矛盾。在本研究中,我们旨在基于一个大型开放获取的扩散磁共振成像(MRI)数据库,运用深度学习技术来应对这一挑战,该数据库记录了1065名年轻健康受试者的数据,其中包括490名男性和575名女性健康受试者。与常用的二维卷积神经网络(CNN)不同,我们提出了一种三维CNN方法,其结构经过重新设计,包括三个级联的隐藏层以及一个线性层和一个终端Softmax层。所提出的三维CNN被应用于全脑以及特定脑区的分数各向异性(FA)图谱。熵测度被应用于从第一个隐藏层提取的最低级图像特征,以检验男性和女性大脑结构复杂性的差异。将所得结果与使用支持向量机(SVM)和基于纤维束的空间统计(TBSS)的结果进行比较。在所获得的全脑FA图像上,所提出的三维CNN产生了比SVM(78.2%)更好的分类结果(93.3%),表明在全脑范围内可能存在与性别相关的差异。此外,在几个特定脑区也显示出了高分类准确率,包括灰质中的左侧楔前叶、左侧中央后回、左侧扣带回、额叶右侧眶回和左侧枕丘脑,以及白质中的小脑中脚、胼胝体膝部、右侧放射冠前部、右侧放射冠上部和左侧内囊前肢。本研究为男性和女性之间的结构差异提供了新的见解,突出了在脑研究中考虑性别作为生物学变量的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5dd/6418873/1334d21443de/fnins-13-00185-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验