School of Social Sciences.
Department of Information and Computing Sciences, Utrecht University.
Psychol Rev. 2019 Apr;126(3):345-373. doi: 10.1037/rev0000138.
In psycholinguistics, there has been relatively little work investigating conceptualization-how speakers decide which concepts to express. This contrasts with work in natural language generation (NLG), a subfield of artificial intelligence, where much research has explored content determination during the generation of referring expressions. Existing NLG algorithms for conceptualization during reference production do not fully explain previous psycholinguistic results, so we developed new models that we tested in three language production experiments. In our experiments, participants described target objects to another participant. In Experiment 1, either size, color, or both distinguished the target from all distractor objects; in Experiment 2, either color, type, or both color and type distinguished it from all distractors; In Experiment 3, color, size, or the border around the object distinguished the target. We tested how well the different models fit the distribution of description types (e.g., "small candle," "gray candle," "small gray candle") that participants produced. Across these experiments, the probabilistic referential overspecification model (PRO) provided the best fit. In this model, speakers first choose a property that rules out all distractors. If there is more than one such property, then they probabilistically choose one on the basis of a preference for that property. Next, they sometimes add another property, with the probability again determined by its preference and speakers' eagerness to overspecify. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
在心理语言学中,相对较少有研究关注概念化——说话者如何决定表达哪些概念。这与人工智能的一个子领域——自然语言生成(NLG)形成对比,在自然语言生成中,许多研究都探讨了在生成指称表达式期间的内容确定。现有的 NLG 算法在生成参考时进行概念化并没有完全解释以前的心理语言学结果,因此我们开发了新的模型,并在三个语言产生实验中进行了测试。在我们的实验中,参与者向另一位参与者描述目标对象。在实验 1 中,要么大小,要么颜色,或者两者都将目标与所有干扰对象区分开来;在实验 2 中,要么颜色,要么类型,或者颜色和类型都将其与所有干扰物区分开来;在实验 3 中,颜色、大小或物体周围的边框将目标与其他物体区分开来。我们测试了不同模型如何拟合参与者产生的描述类型(例如,“小蜡烛”、“灰色蜡烛”、“小灰色蜡烛”)的分布。在这些实验中,概率指称过度指定模型(PRO)提供了最佳拟合。在该模型中,说话者首先选择一个排除所有干扰物的属性。如果有不止一个这样的属性,那么他们会根据对该属性的偏好概率选择一个属性。接下来,他们有时会添加另一个属性,其概率再次由其偏好和说话者过度指定的意愿决定。(PsycINFO 数据库记录(c)2019 APA,保留所有权利)。