Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
Collaboration for joint PhD degree, European Molecular Biology Laboratory and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany.
Elife. 2019 Mar 26;8:e43204. doi: 10.7554/eLife.43204.
RNA polymerase (Pol) I is a 14-subunit enzyme that solely transcribes pre-ribosomal RNA. Cryo-electron microscopy (EM) structures of Pol I initiation and elongation complexes have given first insights into the molecular mechanisms of Pol I transcription. Here, we present cryo-EM structures of yeast Pol I elongation complexes (ECs) bound to the nucleotide analog GMPCPP at 3.2 to 3.4 Å resolution that provide additional insight into the functional interplay between the Pol I-specific transcription-like factors A49-A34.5 and A12.2. Strikingly, most of the nucleotide-bound ECs lack the A49-A34.5 heterodimer and adopt a Pol II-like conformation, in which the A12.2 C-terminal domain is bound in a previously unobserved position at the A135 surface. Our structural and biochemical data suggest a mechanism where reversible binding of the A49-A34.5 heterodimer could contribute to the regulation of Pol I transcription initiation and elongation.
RNA 聚合酶(Pol)I 是一种由 14 个亚基组成的酶,它仅转录核糖体前 RNA。Pol I 起始和延伸复合物的冷冻电子显微镜(EM)结构首次揭示了 Pol I 转录的分子机制。在这里,我们呈现了分辨率为 3.2 至 3.4Å 的酵母 Pol I 延伸复合物(EC)与核苷酸类似物 GMPCPP 结合的冷冻电镜结构,这些结构提供了 Pol I 特异性转录因子 A49-A34.5 和 A12.2 之间功能相互作用的更多见解。引人注目的是,大多数结合核苷酸的 EC 缺乏 A49-A34.5 异二聚体,并采用 Pol II 样构象,其中 A12.2 C 端结构域结合在以前未观察到的 A135 表面位置。我们的结构和生化数据表明,A49-A34.5 异二聚体的可逆结合可能有助于 Pol I 转录起始和延伸的调节。