Prosthodontics, Prince Philip Dental Hospital, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong.
Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.
J Biomed Mater Res A. 2019 Aug;107(8):1654-1666. doi: 10.1002/jbm.a.36681. Epub 2019 Apr 9.
Calcium phosphate bioceramics nanoparticles such as nano-hydroxyapatite (nHA) and nano-tricalcium phosphate (nTCP) are the main focus of basic and applied research for bone tissue regeneration. In particular, a combination of these two phases (nHA + nTCP) which refers to as "nano-biphasic calcium phosphates (nBCP)" is of interest due to the preferred biodegradation nature compared to single-phase bioceramics. However, the available synthesis processes are challenging and the biomaterials properties are yet to be optimized to mimic the physiochemical properties of the natural nanoscale bone apatite. In this study, a new approach was developed for the production of optimized bioceramic nanoparticles aiming to improve their biomimecity for better biological performances. Nanoparticles were synthesized through a carefully controlled and modified wet mechano-chemical method combined with a controlled solid-state synthesis. Different processing variables have been analyzed including; milling parameters, post-synthesis treatment, and calcination phase. Detailed physicochemical characterizations of nanoparticles revealed higher crystallinity (∼100%), lower crystallite/particle size (58 nm), higher homogeneity, reduced particle agglomeration size (6 μm), and a closer molar ratio (1.8) to biological apatite compared to control and standard samples. Furthermore, the study group was confirmed as calcium-deficient carbonate-substituted BCP nanoparticles (nHA/nβ-TCP: 92/8%). As such, the introduced method can afford an easier and accurate control over nanoparticle physiochemical properties including the composition phase which can be used for better customization of biomaterials for clinical applications. The findings of this article will also help researchers in the further advancement of production strategies of biomaterials. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1654-1666, 2019.
钙磷酸盐生物陶瓷纳米粒子,如纳米羟基磷灰石(nHA)和纳米磷酸三钙(nTCP),是骨组织再生基础和应用研究的主要重点。特别是,这两种相(nHA + nTCP)的组合,称为“纳米双相钙磷(nBCP)”,由于与单相生物陶瓷相比具有优先的生物降解性质而受到关注。然而,现有的合成工艺具有挑战性,生物材料的性能仍有待优化,以模拟天然纳米级骨磷灰石的物理化学性质。在这项研究中,开发了一种新的方法来生产优化的生物陶瓷纳米粒子,旨在提高其仿生性能,以获得更好的生物学性能。通过精心控制和改进的湿机械化学方法与受控的固态合成相结合,合成了纳米粒子。分析了不同的加工变量,包括:研磨参数、后合成处理和煅烧阶段。纳米粒子的详细物理化学特性揭示了更高的结晶度(约 100%)、更低的晶粒度/颗粒尺寸(58nm)、更高的均匀性、更小的颗粒团聚尺寸(6μm),以及与生物磷灰石更接近的摩尔比(1.8),与对照和标准样品相比。此外,研究小组被确认为缺钙碳酸根取代的 BCP 纳米粒子(nHA/nβ-TCP:92/8%)。因此,所介绍的方法可以更轻松、更精确地控制纳米粒子的物理化学性质,包括组成相,这可以用于更好地定制临床应用的生物材料。本文的研究结果也将有助于研究人员进一步推进生物材料的生产策略。© 2019 威利父子公司。J 生物医学材料研究部分 A:107A:1654-1666,2019。