Institute of Molecular Health Sciences, ETH Zurich, Switzerland (P.M., G.R., N.F., S.T., W.K.).
Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Dresden, Germany (P.M., E.H.).
Circulation. 2019 Jun 11;139(24):2778-2792. doi: 10.1161/CIRCULATIONAHA.118.036769. Epub 2019 Mar 29.
Enhancers are genomic regulatory elements conferring spatiotemporal and signal-dependent control of gene expression. Recent evidence suggests that enhancers can generate noncoding enhancer RNAs, but their (patho)biological functions remain largely elusive.
We performed chromatin immunoprecipitation-coupled sequencing of histone marks combined with RNA sequencing of left ventricular biopsies from experimental and genetic mouse models of human cardiac hypertrophy to identify transcripts revealing enhancer localization, conservation with the human genome, and hypoxia-inducible factor 1α dependence. The most promising candidate, hypoxia-inducible enhancer RNA ( HERNA)1, was further examined by investigating its capacity to modulate neighboring coding gene expression by binding to their gene promoters by using chromatin isolation by RNA purification and λN-BoxB tethering-based reporter assays. The role of HERNA1 and its neighboring genes for pathological stress-induced growth and contractile dysfunction, and the therapeutic potential of HERNA1 inhibition was studied in gapmer-mediated loss-of-function studies in vitro using human induced pluripotent stem cell-derived cardiomyocytes and various in vivo models of human pathological cardiac hypertrophy.
HERNA1 is robustly induced on pathological stress. Production of HERNA1 is initiated by direct hypoxia-inducible factor 1α binding to a hypoxia-response element in the histoneH3-lysine27acetylation marks-enriched promoter of the enhancer and confers hypoxia responsiveness to nearby genes including synaptotagmin XVII, a member of the family of membrane-trafficking and Ca-sensing proteins and SMG1, encoding a phosphatidylinositol 3-kinase-related kinase. Consequently, a substrate of SMG1, ATP-dependent RNA helicase upframeshift 1, is hyperphoshorylated in a HERNA1- and SMG1-dependent manner. In vitro and in vivo inactivation of SMG1 and SYT17 revealed overlapping and distinct roles in modulating cardiac hypertrophy. Finally, in vivo administration of antisense oligonucleotides targeting HERNA1 protected mice from stress-induced pathological hypertrophy. The inhibition of HERNA1 postdisease development reversed left ventricular growth and dysfunction, resulting in increased overall survival.
HERNA1 is a novel heart-specific noncoding RNA with key regulatory functions in modulating the growth, metabolic, and contractile gene program in disease, and reveals a molecular target amenable to therapeutic exploitation.
增强子是赋予基因表达时空和信号依赖性调控的基因组调控元件。最近的证据表明,增强子可以产生非编码增强子 RNA,但它们的(病理)生物学功能仍很大程度上难以捉摸。
我们通过对实验和遗传型人类心肌肥厚小鼠模型的左心室活检进行染色质免疫沉淀结合 RNA 测序,鉴定出揭示增强子定位、与人类基因组保守性和缺氧诱导因子 1α依赖性的转录本。最有前途的候选物缺氧诱导增强子 RNA (HERNA)1 通过使用染色质分离 RNA 纯化和 λN-BoxB 系绳基于报告基因检测,研究其通过结合基因启动子来调节邻近编码基因表达的能力,进一步进行了研究。HERNA1 及其邻近基因在病理性应激诱导的生长和收缩功能障碍中的作用,以及 HERNA1 抑制的治疗潜力,在体外使用人诱导多能干细胞衍生的心肌细胞和各种人类病理性心肌肥厚的体内模型进行 gapmer 介导的功能丧失研究中进行了研究。
HERNA1 在病理性应激下被强烈诱导。HERNA1 的产生是由缺氧诱导因子 1α直接结合富含组蛋白 H3-赖氨酸 27 乙酰化标记的增强子启动子中的缺氧反应元件启动的,并赋予附近基因(包括突触结合蛋白 XVII,一种膜运输和 Ca 感应蛋白家族成员和 SMG1,编码一种磷酸肌醇 3-激酶相关激酶)的缺氧反应性。因此,SMG1 的底物,ATP 依赖性 RNA 解旋酶 UPFRAMESHIFT1,以 HERNA1 和 SMG1 依赖的方式被过度磷酸化。SMG1 和 SYT17 的体外和体内失活揭示了在调节心肌肥厚方面的重叠和独特作用。最后,体内给予针对 HRNA1 的反义寡核苷酸可保护小鼠免受应激诱导的病理性肥大。HERNA1 的抑制作用在疾病后发展过程中逆转了左心室生长和功能障碍,从而提高了总生存率。
HERNA1 是一种新型心脏特异性非编码 RNA,具有调节疾病中生长、代谢和收缩基因程序的关键调节功能,并揭示了一种可用于治疗开发的分子靶标。