Suppr超能文献

呼吸条件下马克斯克鲁维酵母中乙酰辅酶 A 合成途径和三羧酸循环通量增加。

Increased flux in acetyl-CoA synthetic pathway and TCA cycle of Kluyveromyces marxianus under respiratory conditions.

机构信息

Graduate School of Innovation, Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.

RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.

出版信息

Sci Rep. 2019 Mar 29;9(1):5319. doi: 10.1038/s41598-019-41863-1.

Abstract

Yeasts are extremely useful, not only for fermentation but also for a wide spectrum of fuel and chemical productions. We analyzed the overall metabolic turnover and transcript dynamics in glycolysis and the TCA cycle, revealing the difference in adaptive pyruvate metabolic response between a Crabtree-negative species, Kluyveromyces marxianus, and a Crabtree-positive species, Saccharomyces cerevisiae, during aerobic growth. Pyruvate metabolism was inclined toward ethanol production under aerobic conditions in S. cerevisiae, while increased transcript abundances of the genes involved in ethanol metabolism and those encoding pyruvate dehydrogenase were seen in K. marxianus, indicating the augmentation of acetyl-CoA synthesis. Furthermore, different metabolic turnover in the TCA cycle was observed in the two species: malate and fumarate production in S. cerevisiae was higher than in K. marxianus, irrespective of aeration; however, fluxes of both the reductive and oxidative TCA cycles were enhanced in K. marxianus by aeration, implying both the cycles contribute to efficient electron flux without producing ethanol. Additionally, decreased hexokinase activity under aerobic conditions is expected to be important for maintenance of suitable carbon flux. These findings demonstrate differences in the key metabolic trait of yeasts employing respiration or fermentation, and provide important insight into the metabolic engineering of yeasts.

摘要

酵母不仅在发酵过程中非常有用,而且在广泛的燃料和化学产品生产中也非常有用。我们分析了糖酵解和三羧酸 (TCA) 循环中的整体代谢周转和转录动态,揭示了在需氧生长过程中,克雷伯氏菌属(Crabtree-negative)的马克斯克鲁维酵母(Kluyveromyces marxianus)和酿酒酵母(Saccharomyces cerevisiae)这两种克雷伯氏菌属(Crabtree-positive)物种之间,丙酮酸代谢对适应丙酮酸代谢反应的差异。在酿酒酵母(S. cerevisiae)中,丙酮酸代谢倾向于在需氧条件下生成乙醇,而马克斯克鲁维酵母(K. marxianus)中涉及乙醇代谢和丙酮酸脱氢酶编码的基因的转录丰度增加,表明乙酰辅酶 A 合成增加。此外,两种酵母中 TCA 循环的代谢周转也不同:无论通气与否,酿酒酵母(S. cerevisiae)中苹果酸和富马酸的产量都高于马克斯克鲁维酵母(K. marxianus);然而,通气可增强马克斯克鲁维酵母(K. marxianus)中还原和氧化 TCA 循环的通量,这意味着两个循环都有助于有效地传递电子,而不产生乙醇。此外,需氧条件下己糖激酶活性降低,预计对维持适当的碳通量很重要。这些发现表明了使用呼吸作用或发酵作用的酵母的关键代谢特征的差异,并为酵母的代谢工程提供了重要的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abd1/6440987/bb8c768741fe/41598_2019_41863_Fig1_HTML.jpg

相似文献

2
The high fermentative metabolism of Kluyveromyces marxianus UFV-3 relies on the increased expression of key lactose metabolic enzymes.
Antonie Van Leeuwenhoek. 2012 Mar;101(3):541-50. doi: 10.1007/s10482-011-9668-9. Epub 2011 Nov 9.
3
Comparative metabolome and transcriptome analyses of the properties of and yeasts in apple cider fermentation.
Food Chem (Oxf). 2022 Mar 8;4:100095. doi: 10.1016/j.fochms.2022.100095. eCollection 2022 Jul 30.
5
Metabolic Engineering of for Ethyl Acetate Biosynthesis.
ACS Synth Biol. 2021 Mar 19;10(3):495-504. doi: 10.1021/acssynbio.0c00446. Epub 2021 Feb 12.
7
Opuntia ficus-indica cladodes as feedstock for ethanol production by Kluyveromyces marxianus and Saccharomyces cerevisiae.
World J Microbiol Biotechnol. 2014 Dec;30(12):3173-83. doi: 10.1007/s11274-014-1745-6. Epub 2014 Sep 24.
8
Alternative reactions at the interface of glycolysis and citric acid cycle in Saccharomyces cerevisiae.
FEMS Yeast Res. 2016 May;16(3). doi: 10.1093/femsyr/fow017. Epub 2016 Feb 18.
9
Synthetic metabolic bypass for a metabolic toggle switch enhances acetyl-CoA supply for isopropanol production by Escherichia coli.
J Biosci Bioeng. 2017 May;123(5):625-633. doi: 10.1016/j.jbiosc.2016.12.009. Epub 2017 Feb 14.
10
Reconstruction and analysis of a Kluyveromyces marxianus genome-scale metabolic model.
BMC Bioinformatics. 2019 Nov 6;20(1):551. doi: 10.1186/s12859-019-3134-5.

引用本文的文献

1
Adaptive Evolution of Enhances Saline-Alkali Resistance for High-Performance Concrete Crack Repair via MICP.
Microorganisms. 2025 Jun 30;13(7):1526. doi: 10.3390/microorganisms13071526.
4
An adaptive biomolecular condensation response is conserved across environmentally divergent species.
Nat Commun. 2024 Apr 11;15(1):3127. doi: 10.1038/s41467-024-47355-9.
6
An adaptive biomolecular condensation response is conserved across environmentally divergent species.
bioRxiv. 2023 Jul 29:2023.07.28.551061. doi: 10.1101/2023.07.28.551061.
7
Fluorescence lifetime imaging of NAD(P)H upon oxidative stress in .
Front Bioeng Biotechnol. 2022 Sep 2;10:998800. doi: 10.3389/fbioe.2022.998800. eCollection 2022.
8
Metabolic engineering of for biomass-based applications.
3 Biotech. 2022 Oct;12(10):259. doi: 10.1007/s13205-022-03324-x. Epub 2022 Sep 3.
9
Glucose feeds the tricarboxylic acid cycle via excreted ethanol in fermenting yeast.
Nat Chem Biol. 2022 Dec;18(12):1380-1387. doi: 10.1038/s41589-022-01091-7. Epub 2022 Aug 15.

本文引用的文献

1
Reprogramming Yeast Metabolism from Alcoholic Fermentation to Lipogenesis.
Cell. 2018 Sep 6;174(6):1549-1558.e14. doi: 10.1016/j.cell.2018.07.013. Epub 2018 Aug 9.
2
Global rewiring of cellular metabolism renders Saccharomyces cerevisiae Crabtree negative.
Nat Commun. 2018 Aug 3;9(1):3059. doi: 10.1038/s41467-018-05409-9.
4
A history of genome editing in Saccharomyces cerevisiae.
Yeast. 2018 May;35(5):355-360. doi: 10.1002/yea.3300. Epub 2018 Jan 29.
5
Engineering and Evolution of Saccharomyces cerevisiae to Produce Biofuels and Chemicals.
Adv Biochem Eng Biotechnol. 2018;162:175-215. doi: 10.1007/10_2016_22.
6
Complete Genome Sequence of Kluyveromyces marxianus NBRC1777, a Nonconventional Thermotolerant Yeast.
Genome Announc. 2015 Apr 23;3(2):e00389-15. doi: 10.1128/genomeA.00389-15.
8
Improving xylitol production at elevated temperature with engineered Kluyveromyces marxianus through over-expressing transporters.
Bioresour Technol. 2015 Jan;175:642-5. doi: 10.1016/j.biortech.2014.10.150. Epub 2014 Nov 4.
10
Dynamic metabolic profiling of cyanobacterial glycogen biosynthesis under conditions of nitrate depletion.
J Exp Bot. 2013 Jul;64(10):2943-54. doi: 10.1093/jxb/ert134. Epub 2013 May 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验