Suppr超能文献

通过微生物诱导碳酸钙沉淀实现的适应性进化增强了高性能混凝土裂缝修复的耐盐碱性能 。

Adaptive Evolution of Enhances Saline-Alkali Resistance for High-Performance Concrete Crack Repair via MICP.

作者信息

Liu Jieyu, Xu Huaihua, Dong Min, Cheng Zilin, Mi Chenkai, Sun Shuai, Zhu Ruiying, Han Peipei

机构信息

College of Bioengineering, Tianjin University of Science and Technology, Tianjin 300457, China.

出版信息

Microorganisms. 2025 Jun 30;13(7):1526. doi: 10.3390/microorganisms13071526.

Abstract

Microbially induced calcium carbonate precipitation (MICP) has emerged as a research focus in concrete crack remediation due to its environmental compatibility and efficient mineralization capacity. The hypersaline conditions of seawater (average 35 g/L NaCl) and alkaline environments (pH 12) within concrete cracks pose significant challenges to the survival of mineralization-capable microorganisms. To enhance microbial tolerance under these extreme conditions, this study employed a laboratory adaptive evolution strategy to successfully develop a strain demonstrating tolerance to 35 g/L NaCl and pH 12. Comparative analysis of growth characteristics (OD), pH variation, urease activity, and specific urease activity revealed that the evolved strain maintained growth kinetics under harsh conditions comparable to the parental strain under normal conditions. Subsequent evaluations demonstrated the evolved strain's superior salt-alkali tolerance through enhanced enzymatic activity, precipitation yield, particle size distribution, crystal morphology, and microstructure characterization under various saline-alkaline conditions. Whole-genome sequencing identified five non-synonymous mutated genes associated with ribosomal stability, transmembrane transport, and osmoprotectant synthesis. Transcriptomic profiling revealed 1082 deferentially expressed genes (543 upregulated, 539 downregulated), predominantly involved in ribosomal biogenesis, porphyrin metabolism, oxidative phosphorylation, tricarboxylic acid (TCA) cycle, and amino acid metabolism. In concrete remediation experiments, the evolved strain achieved superior performance with 89.3% compressive strength recovery and 48% reduction in water absorption rate. This study elucidates the molecular mechanisms underlying 's salt-alkali tolerance and validates its potential application in the remediation of marine engineering.

摘要

微生物诱导碳酸钙沉淀(MICP)因其环境兼容性和高效矿化能力,已成为混凝土裂缝修复领域的研究热点。混凝土裂缝中的海水高盐环境(平均35 g/L NaCl)和碱性环境(pH 12)对具有矿化能力的微生物的存活构成了重大挑战。为了提高微生物在这些极端条件下的耐受性,本研究采用实验室适应性进化策略,成功培育出一株对35 g/L NaCl和pH 12具有耐受性的菌株。通过对生长特性(OD)、pH变化、脲酶活性和比脲酶活性的比较分析发现,进化菌株在恶劣条件下的生长动力学与亲本菌株在正常条件下相当。后续评估表明,通过在各种盐碱条件下增强酶活性、沉淀产量、粒径分布、晶体形态和微观结构表征,进化菌株具有更强的盐碱耐受性。全基因组测序确定了五个与核糖体稳定性、跨膜运输和渗透保护剂合成相关的非同义突变基因。转录组分析揭示了1082个差异表达基因(543个上调,539个下调),主要参与核糖体生物合成、卟啉代谢、氧化磷酸化、三羧酸(TCA)循环和氨基酸代谢。在混凝土修复实验中,进化菌株表现优异,抗压强度恢复率达89.3%,吸水率降低48%。本研究阐明了该菌株盐碱耐受性的分子机制,并验证了其在海洋工程修复中的潜在应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dc1/12300605/286754ffc0e0/microorganisms-13-01526-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验