Adriaans Erwin, Komjáthy Júlia
Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
J Stat Phys. 2018;173(3):1082-1109. doi: 10.1007/s10955-018-1957-5. Epub 2018 Jan 18.
In this paper we study first-passage percolation in the configuration model with empirical degree distribution that follows a power-law with exponent . We assign independent and identically distributed (i.i.d.) weights to the edges of the graph. We investigate the weighted distance (the length of the shortest weighted path) between two uniformly chosen vertices, called typical distances. When the underlying age-dependent branching process approximating the local neighborhoods of vertices is found to produce infinitely many individuals in finite time-called explosive branching process-Baroni, Hofstad and the second author showed in Baroni et al. (J Appl Probab 54(1):146-164, 2017) that typical distances converge in distribution to a bounded random variable. The order of magnitude of typical distances remained open for the case when the underlying branching process is not explosive. We close this gap by determining the first order of magnitude of typical distances in this regime for arbitrary, not necessary continuous edge-weight distributions that produce a non-explosive age-dependent branching process with infinite mean power-law offspring distributions. This sequence tends to infinity with the amount of vertices, and, by choosing an appropriate weight distribution, can be tuned to be any growing function that is , where is the number of vertices in the graph. We show that the result remains valid for the the erased configuration model as well, where we delete loops and any second and further edges between two vertices.
在本文中,我们研究了配置模型中的首达渗流,其经验度分布遵循指数为 的幂律。我们为图的边赋予独立同分布(i.i.d.)的权重。我们研究两个均匀选取的顶点之间的加权距离(最短加权路径的长度),称之为典型距离。当发现近似顶点局部邻域的基础年龄依赖分支过程在有限时间内产生无限多个个体时——称为爆炸分支过程——巴罗尼、霍夫斯塔德和第二作者在巴罗尼等人(《应用概率杂志》54(1):146 - 164, 2017)中表明典型距离在分布上收敛到一个有界随机变量。当基础分支过程不是爆炸式时,对于 情形典型距离的量级仍然未知。我们通过确定在这种情况下典型距离的一阶量级来填补这一空白,对于任意的、不一定连续的边权重分布,这些分布会产生具有无限平均幂律后代分布的非爆炸年龄依赖分支过程。这个序列随着顶点数量趋于无穷大,并且通过选择合适的权重分布,可以调整为任何增长函数 ,其中 是图中的顶点数量。我们表明该结果对于擦除配置模型也仍然有效,在擦除配置模型中我们删除环以及两个顶点之间的任何第二条及后续边。