Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
Nat Biomed Eng. 2019 Jan;3(1):69-78. doi: 10.1038/s41551-018-0309-8. Epub 2018 Oct 22.
Biological electromagnetic fields arise throughout all tissue depths and types, and correlate with physiological processes and signalling in organs of the body. Most of the methods for monitoring these fields are either highly invasive or spatially coarse. Here, we show that implantable active coil-based transducers that are detectable via magnetic resonance imaging enable the remote sensing of biological fields. These devices consist of inductively coupled resonant circuits that change their properties in response to electrical or photonic cues, thereby modulating the local magnetic resonance imaging signal without the need for onboard power or wired connectivity. We discuss design parameters relevant to the construction of the transducers on millimetre and submillimetre scales, and demonstrate their in vivo functionality for measuring time-resolved bioluminescence in rodent brains. Biophysical sensing via microcircuits that leverage the capabilities of magnetic resonance imaging may enable a wide range of biological and biomedical applications.
生物电磁场所处的组织深度和类型各异,并与身体器官的生理过程和信号传导相关。大多数监测这些场的方法要么高度侵入性,要么空间分辨率粗糙。在这里,我们展示了可通过磁共振成像检测到的基于植入式有源线圈的换能器,可实现对生物场的远程感应。这些器件由电感耦合谐振电路组成,可响应电或光子信号改变其性质,从而在无需板载电源或有线连接的情况下调制局部磁共振成像信号。我们讨论了与在毫米和亚毫米尺度上构建换能器相关的设计参数,并展示了它们在测量啮齿动物大脑中时间分辨生物发光的体内功能。通过利用磁共振成象能力的微电路进行生物物理传感,可能会实现广泛的生物和生物医学应用。