Suppr超能文献

相似文献

1
Wireless resonant circuits for the minimally invasive sensing of biophysical processes in magnetic resonance imaging.
Nat Biomed Eng. 2019 Jan;3(1):69-78. doi: 10.1038/s41551-018-0309-8. Epub 2018 Oct 22.
2
A Comprehensive Study on Magnetoelectric Transducers for Wireless Power Transfer Using Low-Frequency Magnetic Fields.
IEEE Trans Biomed Circuits Syst. 2021 Oct;15(5):1079-1092. doi: 10.1109/TBCAS.2021.3118981. Epub 2021 Dec 9.
3
Volumetric wireless coil based on periodically coupled split-loop resonators for clinical wrist imaging.
Magn Reson Med. 2018 Oct;80(4):1726-1737. doi: 10.1002/mrm.27140. Epub 2018 Feb 9.
4
Study on electromagnetic characteristics of the magnetic coupling resonant coil for the wireless power transmission system.
J Appl Biomater Funct Mater. 2018 Jan;16(1_suppl):140-149. doi: 10.1177/2280800018757335.
5
Active photonic wireless power transfer into live tissues.
Proc Natl Acad Sci U S A. 2020 Jul 21;117(29):16856-16863. doi: 10.1073/pnas.2002201117. Epub 2020 Jul 6.
6
A Magnetic Particle Imaging Approach for Minimally Invasive Imaging and Sensing With Implantable Bioelectronic Circuits.
IEEE Trans Med Imaging. 2024 May;43(5):1740-1752. doi: 10.1109/TMI.2023.3348149. Epub 2024 May 2.
7
Optimal position of the transmitter coil for wireless power transfer to the implantable device.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:6549-52. doi: 10.1109/EMBC.2014.6945128.
8
Miniaturized, biopsy-implantable chemical sensor with wireless, magnetic resonance readout.
Lab Chip. 2015 Sep 7;15(17):3465-72. doi: 10.1039/c5lc00546a. Epub 2015 Jul 16.
9
Adaptive and Wireless Recordings of Electrophysiological Signals During Concurrent Magnetic Resonance Imaging.
IEEE Trans Biomed Eng. 2019 Jun;66(6):1649-1657. doi: 10.1109/TBME.2018.2877640. Epub 2018 Oct 23.
10
Basic characteristics of implantable flexible pressure sensor for wireless readout using MRI.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:2338-41. doi: 10.1109/EMBC.2014.6944089.

引用本文的文献

1
Self-Aligned Multilayered Nitrogen Vacancy Diamond Nanoparticles for High Spatial Resolution Magnetometry of Microelectronic Currents.
Nano Lett. 2025 Jun 11;25(23):9204-9213. doi: 10.1021/acs.nanolett.5c00656. Epub 2025 May 19.
2
Magnetic Detection of Neural Activity by Nanocoil Transducers.
Nano Lett. 2024 Oct 23;24(42):13147-13152. doi: 10.1021/acs.nanolett.4c02784. Epub 2024 Sep 25.
3
Imaging bioluminescence by detecting localized haemodynamic contrast from photosensitized vasculature.
Nat Biomed Eng. 2024 Jun;8(6):775-786. doi: 10.1038/s41551-024-01210-w. Epub 2024 May 10.
4
Bioelectronic devices for light-based diagnostics and therapies.
Biophys Rev (Melville). 2023 Jan 20;4(1):011304. doi: 10.1063/5.0102811. eCollection 2023 Mar.
5
Inference of network connectivity from temporally binned spike trains.
J Neurosci Methods. 2024 Apr;404:110073. doi: 10.1016/j.jneumeth.2024.110073. Epub 2024 Feb 2.
6
Interactive Multi-Stage Robotic Positioner for Intra-Operative MRI-Guided Stereotactic Neurosurgery.
Adv Sci (Weinh). 2024 Feb;11(7):e2305495. doi: 10.1002/advs.202305495. Epub 2023 Dec 10.
7
Wireless agents for brain recording and stimulation modalities.
Bioelectron Med. 2023 Sep 20;9(1):20. doi: 10.1186/s42234-023-00122-5.
8
Self-sensing intelligent microrobots for noninvasive and wireless monitoring systems.
Microsyst Nanoeng. 2023 Aug 9;9:102. doi: 10.1038/s41378-023-00574-4. eCollection 2023.
9
Wireless Recording of Cortical Activity by an Ion-Sensitive Field Effect Transistor.
Sens Actuators B Chem. 2023 May 1;382. doi: 10.1016/j.snb.2023.133549. Epub 2023 Feb 21.
10
Wireless Recording of Cortical Activity by an Ion-Sensitive Field Effect Transistor.
bioRxiv. 2023 Jan 20:2023.01.19.524785. doi: 10.1101/2023.01.19.524785.

本文引用的文献

1
Design of sparse Halbach magnet arrays for portable MRI using a genetic algorithm.
IEEE Trans Magn. 2018 Jan;54(1). doi: 10.1109/TMAG.2017.2751001. Epub 2017 Oct 23.
2
Single-cell bioluminescence imaging of deep tissue in freely moving animals.
Science. 2018 Feb 23;359(6378):935-939. doi: 10.1126/science.aaq1067.
3
Molecular fMRI of Serotonin Transport.
Neuron. 2016 Nov 23;92(4):754-765. doi: 10.1016/j.neuron.2016.09.048. Epub 2016 Oct 20.
4
Wireless Recording in the Peripheral Nervous System with Ultrasonic Neural Dust.
Neuron. 2016 Aug 3;91(3):529-39. doi: 10.1016/j.neuron.2016.06.034.
5
B magnetic field homogeneity and shimming for in vivo magnetic resonance spectroscopy.
Anal Biochem. 2017 Jul 15;529:17-29. doi: 10.1016/j.ab.2016.06.003. Epub 2016 Jun 9.
7
Photovoltaic restoration of sight with high visual acuity.
Nat Med. 2015 May;21(5):476-82. doi: 10.1038/nm.3851. Epub 2015 Apr 27.
8
The emergence of single neurons in clinical neurology.
Neuron. 2015 Apr 8;86(1):79-91. doi: 10.1016/j.neuron.2015.03.058.
9
Model validation of untethered, ultrasonic neural dust motes for cortical recording.
J Neurosci Methods. 2015 Apr 15;244:114-22. doi: 10.1016/j.jneumeth.2014.07.025. Epub 2014 Aug 7.
10
Wireless power transfer to deep-tissue microimplants.
Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):7974-9. doi: 10.1073/pnas.1403002111. Epub 2014 May 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验