Program for Human Microbiome Research, Medical University of South Carolina, 135 Cannon Street MSC 200, Charleston, 29425, SC, USA.
Biomedical Informatics Center, Medical University of South Carolina, 135 Cannon Street MSC 200, Charleston, 29425, SC, USA.
Microbiome. 2019 Apr 1;7(1):51. doi: 10.1186/s40168-019-0659-9.
Community-wide analyses provide an essential means for evaluation of the effect of interventions or design variables on the composition of the microbiome. Applications of these analyses are omnipresent in microbiome literature, yet some of their statistical properties have not been tested for robustness towards common features of microbiome data. Recently, it has been reported that PERMANOVA can yield wrong results in the presence of heteroscedasticity and unbalanced sample sizes.
We develop a method for multivariate analysis of variance, [Formula: see text], based on Welch MANOVA that is robust to heteroscedasticity in the data. We do so by extending a previously reported method that does the same for two-level independent factor variables. Our approach can accommodate multi-level factors, stratification, and multiple post hoc testing scenarios. An R language implementation of the method is available at https://github.com/alekseyenko/WdStar .
Our method resolves potential for confounding of location and dispersion effects in multivariate analyses by explicitly accounting for the differences in multivariate dispersion in the data tested. The methods based on [Formula: see text] have general applicability in microbiome and other 'omics data analyses.
全社区分析为评估干预措施或设计变量对微生物组组成的影响提供了一种重要手段。这些分析的应用在微生物组文献中无处不在,但它们的一些统计特性尚未针对微生物组数据的常见特征进行稳健性测试。最近有报道称,在存在异方差和不平衡样本量的情况下,PERMANOVA 可能会产生错误的结果。
我们开发了一种基于 Welch MANOVA 的多元方差分析方法 [Formula: see text],该方法对数据中的异方差具有稳健性。我们通过扩展先前报道的一种方法来实现这一点,该方法适用于两水平独立因子变量。我们的方法可以容纳多层次的因子、分层和多种事后测试场景。该方法的 R 语言实现可在 https://github.com/alekseyenko/WdStar 上获得。
我们的方法通过明确考虑数据中多元离散度的差异,解决了多元分析中位置和离散度效应混淆的问题。基于 [Formula: see text] 的方法具有在微生物组和其他“组学”数据分析中的普遍适用性。