Suppr超能文献

弹性 3D 打印混合聚合物支架改善心肌梗死后的心脏重构。

Elastic 3D-Printed Hybrid Polymeric Scaffold Improves Cardiac Remodeling after Myocardial Infarction.

机构信息

Department of Cardiac Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, P. R. China.

College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China.

出版信息

Adv Healthc Mater. 2019 May;8(10):e1900065. doi: 10.1002/adhm.201900065. Epub 2019 Apr 2.

Abstract

Myocardial remodeling, including ventricular dilation and wall thinning, is an important pathological process caused by myocardial infarction (MI). To intervene in this pathological process, a new type of cardiac scaffold composed of a thermoset (poly-[glycerol sebacate], PGS) and a thermoplastic (poly-[ε-caprolactone], PCL) is directly printed by employing fused deposition modeling 3D-printing technology. The PGS-PCL scaffold possesses stacked construction with regular crisscrossed filaments and interconnected micropores and exhibits superior mechanical properties. In vitro studies demonstrate favorable biodegradability and biocompatibility of the PGS-PCL scaffold. When implanted onto the infarcted myocardium, this scaffold improves and preserves heart function. Furthermore, the scaffold improves several vital aspects of myocardial remodeling. On the morphological level, the scaffold reduces ventricular wall thinning and attenuated infarct size, and on the cellular level, it enhances vascular density and increases M2 macrophage infiltration, which might further contribute to the mitigated myocardial apoptosis rate. Moreover, the flexible PGS-PCL scaffold can be tailored to any desired shape, showing promise for annular-shaped restraint device application and meeting the demands for minimal invasive operation. Overall, this study demonstrates the therapeutic effects and versatile applications of a novel 3D-printed, biodegradable and biocompatible cardiac scaffold, which represents a promising strategy for improving myocardial remodeling after MI.

摘要

心肌重构,包括心室扩张和壁变薄,是心肌梗死(MI)引起的重要病理过程。为了干预这一病理过程,一种新型的心脏支架由热固性(聚[癸二酸甘油酯],PGS)和热塑性(聚[ε-己内酯],PCL)组成,通过采用熔融沉积造型 3D 打印技术直接打印。PGS-PCL 支架具有堆叠结构,具有规则交错的细丝和相互连接的微孔,并具有优异的机械性能。体外研究表明 PGS-PCL 支架具有良好的可生物降解性和生物相容性。当植入梗死的心肌时,该支架可改善和维持心脏功能。此外,该支架改善了心肌重构的几个重要方面。在形态学水平上,支架减少了心室壁变薄和梗死面积的减小,在细胞水平上,支架增加了血管密度和增加了 M2 巨噬细胞浸润,这可能进一步有助于减轻心肌细胞凋亡率。此外,柔性 PGS-PCL 支架可以定制成任何所需的形状,有望应用于环形约束装置,并满足微创操作的需求。总的来说,这项研究展示了一种新型 3D 打印、可生物降解和生物相容的心脏支架的治疗效果和多功能应用,为改善 MI 后心肌重构提供了一种有前途的策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验