Suppr超能文献

动态深度命中:一种基于纵向数据的具有竞争风险的动态生存分析的深度学习方法。

Dynamic-DeepHit: A Deep Learning Approach for Dynamic Survival Analysis With Competing Risks Based on Longitudinal Data.

出版信息

IEEE Trans Biomed Eng. 2020 Jan;67(1):122-133. doi: 10.1109/TBME.2019.2909027. Epub 2019 Apr 3.

Abstract

Currently available risk prediction methods are limited in their ability to deal with complex, heterogeneous, and longitudinal data such as that available in primary care records, or in their ability to deal with multiple competing risks. This paper develops a novel deep learning approach that is able to successfully address current limitations of standard statistical approaches such as landmarking and joint modeling. Our approach, which we call Dynamic-DeepHit, flexibly incorporates the available longitudinal data comprising various repeated measurements (rather than only the last available measurements) in order to issue dynamically updated survival predictions for one or multiple competing risk(s). Dynamic-DeepHit learns the time-to-event distributions without the need to make any assumptions about the underlying stochastic models for the longitudinal and the time-to-event processes. Thus, unlike existing works in statistics, our method is able to learn data-driven associations between the longitudinal data and the various associated risks without underlying model specifications. We demonstrate the power of our approach by applying it to a real-world longitudinal dataset from the U.K. Cystic Fibrosis Registry, which includes a heterogeneous cohort of 5883 adult patients with annual follow-ups between 2009 to 2015. The results show that Dynamic-DeepHit provides a drastic improvement in discriminating individual risks of different forms of failures due to cystic fibrosis. Furthermore, our analysis utilizes post-processing statistics that provide clinical insight by measuring the influence of each covariate on risk predictions and the temporal importance of longitudinal measurements, thereby enabling us to identify covariates that are influential for different competing risks.

摘要

目前可用的风险预测方法在处理复杂、异质和纵向数据方面存在局限性,例如初级保健记录中的数据,或者在处理多个竞争风险方面存在局限性。本文提出了一种新的深度学习方法,能够成功解决标准统计方法(如标志和联合建模)目前存在的局限性。我们的方法称为 Dynamic-DeepHit,它灵活地结合了可用的纵向数据,包括各种重复测量(而不仅仅是最后一次可用的测量),以便对一个或多个竞争风险(s)发出动态更新的生存预测。Dynamic-DeepHit 学习事件时间分布,而无需对纵向和事件时间过程的潜在随机模型做出任何假设。因此,与统计学中的现有工作不同,我们的方法能够在没有潜在模型规范的情况下学习纵向数据与各种相关风险之间的数据驱动关联。我们通过将其应用于来自英国囊性纤维化登记处的真实世界纵向数据集来证明我们方法的强大功能,该数据集包含 5883 名成年患者的异质队列,他们在 2009 年至 2015 年期间每年进行随访。结果表明,Dynamic-DeepHit 提供了一种改进的方法,可以区分由于囊性纤维化而导致的不同形式失败的个体风险。此外,我们的分析利用后处理统计信息来衡量每个协变量对风险预测的影响和纵向测量的时间重要性,从而为不同的竞争风险提供有影响力的协变量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验