School of Biochemistry, Faculty of Life Sciences, University of Bristol, University Walk, BS8 1TD, United Kingdom; School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom.
School of Biochemistry, Faculty of Life Sciences, University of Bristol, University Walk, BS8 1TD, United Kingdom.
Curr Opin Cell Biol. 2019 Aug;59:16-23. doi: 10.1016/j.ceb.2019.02.010. Epub 2019 Apr 2.
Cytoskeletal motors of the dynein, kinesin and myosin superfamilies maintain and adapt subcellular organelle organization to meet functional demands and support the vesicular transport of material between organelles. These motors require the capacity to specifically recognize the vesicle/organelle to be transported and are capable of selective recognition of multiple cargo. Recent studies have begun to uncover the molecular basis for motor recruitment and have highlighted the role of organelle-associated 'cargo-adaptor' proteins in cellular transport. These adaptors possess sequences and/or structural features that enable both motor recruitment and activation from regulated, inactive, states to enable motility on the cytoskeleton. Motor-cargo adaptor interactions define a key organelle-cytoskeleton interface, acting as crucial regulatory hubs to enable the cell to finely control membrane trafficking and organelle dynamics. Understanding the molecular basis of these interactions may offer new opportunities to control and manipulate cytoskeletal and organelle dynamics for the development of new research tools and potentially therapeutics.
动力蛋白、驱动蛋白和肌球蛋白超家族的细胞骨架马达维持和调整细胞内细胞器的组织,以满足功能需求,并支持物质在细胞器之间的囊泡运输。这些马达需要能够特异性识别要运输的囊泡/细胞器的能力,并且能够对多种货物进行选择性识别。最近的研究开始揭示马达募集的分子基础,并强调了细胞器相关的“货物衔接蛋白”在细胞运输中的作用。这些衔接蛋白具有使马达募集和从调节的、非活性状态激活的序列和/或结构特征,从而使它们能够在细胞骨架上运动。马达-货物衔接蛋白相互作用定义了一个关键的细胞器-细胞骨架界面,作为关键的调节枢纽,使细胞能够精细地控制膜运输和细胞器动力学。了解这些相互作用的分子基础可能为控制和操纵细胞骨架和细胞器动力学提供新的机会,以开发新的研究工具,并可能提供治疗方法。