Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK.
Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK.
Cell. 2019 Apr 18;177(3):782-796.e27. doi: 10.1016/j.cell.2019.02.023. Epub 2019 Apr 4.
G protein-coupled receptor (GPCR) signaling is the primary method eukaryotes use to respond to specific cues in their environment. However, the relationship between stimulus and response for each GPCR is difficult to predict due to diversity in natural signal transduction architecture and expression. Using genome engineering in yeast, we constructed an insulated, modular GPCR signal transduction system to study how the response to stimuli can be predictably tuned using synthetic tools. We delineated the contributions of a minimal set of key components via computational and experimental refactoring, identifying simple design principles for rationally tuning the dose response. Using five different GPCRs, we demonstrate how this enables cells and consortia to be engineered to respond to desired concentrations of peptides, metabolites, and hormones relevant to human health. This work enables rational tuning of cell sensing while providing a framework to guide reprogramming of GPCR-based signaling in other systems.
G 蛋白偶联受体 (GPCR) 信号转导是真核生物响应其环境中特定信号的主要方式。然而,由于天然信号转导结构和表达的多样性,每个 GPCR 的刺激与反应之间的关系难以预测。通过酵母的基因组工程,我们构建了一个隔离的、模块化的 GPCR 信号转导系统,以研究如何使用合成工具可预测地调节对刺激的反应。我们通过计算和实验重构来描述最小的关键组件集的贡献,确定了合理调节剂量反应的简单设计原则。使用五种不同的 GPCR,我们展示了如何使细胞和群落能够被设计为响应与人类健康相关的肽、代谢物和激素的期望浓度。这项工作能够实现细胞感应的合理调节,同时为在其他系统中基于 GPCR 的信号重新编程提供了指导框架。