Suppr超能文献

DCyFIR:一种高通量 CRISPR 平台,用于多重 G 蛋白偶联受体分析和配体发现。

DCyFIR: a high-throughput CRISPR platform for multiplexed G protein-coupled receptor profiling and ligand discovery.

机构信息

Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136.

Flow Cytometry Shared Resource, University of Miami Sylvester Comprehensive Cancer Center, Miami, FL 33136.

出版信息

Proc Natl Acad Sci U S A. 2020 Jun 9;117(23):13117-13126. doi: 10.1073/pnas.2000430117. Epub 2020 May 20.

Abstract

More than 800 G protein-coupled receptors (GPCRs) comprise the largest class of membrane receptors in humans. While there is ample biological understanding and many approved drugs for prototypic GPCRs, most GPCRs still lack well-defined biological ligands and drugs. Here, we report our efforts to tap the potential of understudied GPCRs by developing yeast-based technologies for high-throughput clustered regularly interspaced short palindromic repeats (CRISPR) engineering and GPCR ligand discovery. We refer to these technologies collectively as Dynamic Cyan Induction by Functional Integrated Receptors, or DCyFIR. A major advantage of DCyFIR is that GPCRs and other assay components are CRISPR-integrated directly into the yeast genome, making it possible to decode ligand specificity by profiling mixtures of GPCR-barcoded yeast strains in a single tube. To demonstrate the capabilities of DCyFIR, we engineered a yeast strain library of 30 human GPCRs and their 300 possible GPCR-Gα coupling combinations. Profiling of these 300 strains, using parallel (DCyFIRscreen) and multiplex (DCyFIRplex) DCyFIR modes, recapitulated known GPCR agonism with 100% accuracy, and identified unexpected interactions for the receptors ADRA2B, HCAR3, MTNR1A, S1PR1, and S1PR2. To demonstrate DCyFIR scalability, we profiled a library of 320 human metabolites and discovered several GPCR-metabolite interactions. Remarkably, many of these findings pertained to understudied pharmacologically dark receptors GPR4, GPR65, GPR68, and HCAR3. Experiments on select receptors in mammalian cells confirmed our yeast-based observations, including our discovery that kynurenic acid activates HCAR3 in addition to GPR35, its known receptor. Taken together, these findings demonstrate the power of DCyFIR for identifying ligand interactions with prototypic and understudied GPCRs.

摘要

超过 800 个 G 蛋白偶联受体(GPCR)构成了人类最大的膜受体家族。虽然已经有大量关于原型 GPCR 的生物学理解和许多已批准的药物,但大多数 GPCR 仍然缺乏明确的生物学配体和药物。在这里,我们报告了我们通过开发基于酵母的高通量成簇规则间隔短回文重复序列(CRISPR)工程和 GPCR 配体发现技术来挖掘研究较少的 GPCR 潜力的努力。我们将这些技术统称为通过功能整合受体的动态青色诱导(Dynamic Cyan Induction by Functional Integrated Receptors,或 DCyFIR)。DCyFIR 的一个主要优势是,GPCR 和其他测定组件直接通过 CRISPR 整合到酵母基因组中,通过在单个管中分析 GPCR 编码酵母菌株的混合物,有可能解码配体特异性。为了展示 DCyFIR 的能力,我们构建了一个由 30 个人类 GPCR 和它们 300 种可能的 GPCR-Gα 偶联组合组成的酵母菌株文库。通过平行(DCyFIRscreen)和多重(DCyFIRplex)DCyFIR 模式对这 300 种菌株进行分析,以 100%的准确率重现了已知的 GPCR 激动作用,并发现了 ADRA2B、HCAR3、MTNR1A、S1PR1 和 S1PR2 受体的意外相互作用。为了展示 DCyFIR 的可扩展性,我们对 320 个人类代谢物文库进行了分析,并发现了一些 GPCR-代谢物相互作用。值得注意的是,这些发现中的许多涉及到研究较少的药理学黑暗受体 GPR4、GPR65、GPR68 和 HCAR3。在哺乳动物细胞中对选定受体的实验证实了我们基于酵母的观察结果,包括我们发现除了其已知受体 GPR35 之外,犬尿酸还可以激活 HCAR3。总之,这些发现证明了 DCyFIR 用于识别原型和研究较少的 GPCR 配体相互作用的强大功能。

相似文献

3
The evolution and mechanism of GPCR proton sensing.GPCR 质子感应的演化和机制。
J Biol Chem. 2021 Jan-Jun;296:100167. doi: 10.1074/jbc.RA120.016352. Epub 2020 Dec 13.
4
Human G protein-coupled receptor studies in Saccharomyces cerevisiae.酵母中人类 G 蛋白偶联受体的研究。
Biochem Pharmacol. 2016 Aug 15;114:103-15. doi: 10.1016/j.bcp.2016.02.010. Epub 2016 Feb 23.
10
Yeast assays for G protein-coupled receptors.G蛋白偶联受体的酵母检测法。
Methods Mol Biol. 2009;552:213-29. doi: 10.1007/978-1-60327-317-6_15.

引用本文的文献

2
Short-chain fatty acids: key antiviral mediators of gut microbiota.短链脂肪酸:肠道微生物群的关键抗病毒介质
Front Immunol. 2025 Jul 25;16:1614879. doi: 10.3389/fimmu.2025.1614879. eCollection 2025.
8
Genome-wide pan-GPCR cell libraries accelerate drug discovery.全基因组泛G蛋白偶联受体细胞文库加速药物发现。
Acta Pharm Sin B. 2024 Oct;14(10):4296-4311. doi: 10.1016/j.apsb.2024.06.023. Epub 2024 Jun 26.
10
High-throughput DNA engineering by mating bacteria.通过细菌交配进行高通量DNA工程
bioRxiv. 2024 Sep 3:2024.09.03.611066. doi: 10.1101/2024.09.03.611066.

本文引用的文献

1
Illuminating G-Protein-Coupling Selectivity of GPCRs.揭示 G 蛋白偶联受体的 G 蛋白偶联选择性。
Cell. 2019 Jun 13;177(7):1933-1947.e25. doi: 10.1016/j.cell.2019.04.044. Epub 2019 May 31.
2
Variable G protein determinants of GPCR coupling selectivity.可变 G 蛋白决定 GPCR 偶联选择性。
Proc Natl Acad Sci U S A. 2019 Jun 11;116(24):12054-12059. doi: 10.1073/pnas.1905993116. Epub 2019 May 29.
3
Ultra-large library docking for discovering new chemotypes.超大库对接发现新化学型。
Nature. 2019 Feb;566(7743):224-229. doi: 10.1038/s41586-019-0917-9. Epub 2019 Feb 6.
5
Glimmers in illuminating the druggable genome.揭示可用药基因组的曙光。
Nat Rev Drug Discov. 2018 May;17(5):301-302. doi: 10.1038/nrd.2017.252. Epub 2018 Jan 19.
9
GPCR-Mediated Signaling of Metabolites.代谢物的 G 蛋白偶联受体介导的信号转导。
Cell Metab. 2017 Apr 4;25(4):777-796. doi: 10.1016/j.cmet.2017.03.008.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验