Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136.
Flow Cytometry Shared Resource, University of Miami Sylvester Comprehensive Cancer Center, Miami, FL 33136.
Proc Natl Acad Sci U S A. 2020 Jun 9;117(23):13117-13126. doi: 10.1073/pnas.2000430117. Epub 2020 May 20.
More than 800 G protein-coupled receptors (GPCRs) comprise the largest class of membrane receptors in humans. While there is ample biological understanding and many approved drugs for prototypic GPCRs, most GPCRs still lack well-defined biological ligands and drugs. Here, we report our efforts to tap the potential of understudied GPCRs by developing yeast-based technologies for high-throughput clustered regularly interspaced short palindromic repeats (CRISPR) engineering and GPCR ligand discovery. We refer to these technologies collectively as Dynamic Cyan Induction by Functional Integrated Receptors, or DCyFIR. A major advantage of DCyFIR is that GPCRs and other assay components are CRISPR-integrated directly into the yeast genome, making it possible to decode ligand specificity by profiling mixtures of GPCR-barcoded yeast strains in a single tube. To demonstrate the capabilities of DCyFIR, we engineered a yeast strain library of 30 human GPCRs and their 300 possible GPCR-Gα coupling combinations. Profiling of these 300 strains, using parallel (DCyFIRscreen) and multiplex (DCyFIRplex) DCyFIR modes, recapitulated known GPCR agonism with 100% accuracy, and identified unexpected interactions for the receptors ADRA2B, HCAR3, MTNR1A, S1PR1, and S1PR2. To demonstrate DCyFIR scalability, we profiled a library of 320 human metabolites and discovered several GPCR-metabolite interactions. Remarkably, many of these findings pertained to understudied pharmacologically dark receptors GPR4, GPR65, GPR68, and HCAR3. Experiments on select receptors in mammalian cells confirmed our yeast-based observations, including our discovery that kynurenic acid activates HCAR3 in addition to GPR35, its known receptor. Taken together, these findings demonstrate the power of DCyFIR for identifying ligand interactions with prototypic and understudied GPCRs.
超过 800 个 G 蛋白偶联受体(GPCR)构成了人类最大的膜受体家族。虽然已经有大量关于原型 GPCR 的生物学理解和许多已批准的药物,但大多数 GPCR 仍然缺乏明确的生物学配体和药物。在这里,我们报告了我们通过开发基于酵母的高通量成簇规则间隔短回文重复序列(CRISPR)工程和 GPCR 配体发现技术来挖掘研究较少的 GPCR 潜力的努力。我们将这些技术统称为通过功能整合受体的动态青色诱导(Dynamic Cyan Induction by Functional Integrated Receptors,或 DCyFIR)。DCyFIR 的一个主要优势是,GPCR 和其他测定组件直接通过 CRISPR 整合到酵母基因组中,通过在单个管中分析 GPCR 编码酵母菌株的混合物,有可能解码配体特异性。为了展示 DCyFIR 的能力,我们构建了一个由 30 个人类 GPCR 和它们 300 种可能的 GPCR-Gα 偶联组合组成的酵母菌株文库。通过平行(DCyFIRscreen)和多重(DCyFIRplex)DCyFIR 模式对这 300 种菌株进行分析,以 100%的准确率重现了已知的 GPCR 激动作用,并发现了 ADRA2B、HCAR3、MTNR1A、S1PR1 和 S1PR2 受体的意外相互作用。为了展示 DCyFIR 的可扩展性,我们对 320 个人类代谢物文库进行了分析,并发现了一些 GPCR-代谢物相互作用。值得注意的是,这些发现中的许多涉及到研究较少的药理学黑暗受体 GPR4、GPR65、GPR68 和 HCAR3。在哺乳动物细胞中对选定受体的实验证实了我们基于酵母的观察结果,包括我们发现除了其已知受体 GPR35 之外,犬尿酸还可以激活 HCAR3。总之,这些发现证明了 DCyFIR 用于识别原型和研究较少的 GPCR 配体相互作用的强大功能。