Cao Jiguo, Soiaporn Kunlaya, Carroll Raymond J, Ruppert David
Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC V5A1S6, Canada (
Capital One, Vienna, VA 22180, USA (
J Agric Biol Environ Stat. 2019 Mar;24(1):112-129. doi: 10.1007/s13253-018-00344-0. Epub 2018 Dec 7.
We propose a copula-based approach for analyzing functional data with correlated multiple functional outcomes exhibiting heterogeneous shape characteristics. To accommodate the possibly large number of parameters due to having several functional outcomes, parameter estimation is performed in two steps: first, the parameters for the marginal distributions are estimated using the skew t family, and then the dependence structure both within and across outcomes is estimated using a Gaussian copula. We develop an estimation algorithm for the dependence parameters based on the Karhunen-Loève expansion and an EM algorithm that significantly reduces the dimension of the problem and is computationally efficient. We also demonstrate prediction of an unknown outcome when the other outcomes are known. We apply our methodology to diffusion tensor imaging data for multiple sclerosis (MS) patients with three outcomes and identify differences in both the marginal distributions and the dependence structure between the MS and control groups. Our proposed methodology is quite general and can be applied to other functional data with multiple outcomes in biology and other fields.
我们提出了一种基于copula的方法,用于分析具有相关多个功能结果且呈现异质形状特征的功能数据。为了适应由于存在多个功能结果而可能出现的大量参数,参数估计分两步进行:首先,使用偏态t族估计边际分布的参数,然后使用高斯copula估计结果内部和结果之间的依赖结构。我们基于Karhunen-Loève展开和EM算法开发了一种依赖参数估计算法,该算法显著降低了问题的维度且计算效率高。我们还展示了在已知其他结果时对未知结果的预测。我们将我们的方法应用于具有三个结果的多发性硬化症(MS)患者的扩散张量成像数据,并识别出MS组和对照组在边际分布和依赖结构上的差异。我们提出的方法非常通用,可应用于生物学和其他领域中具有多个结果的其他功能数据。