Suppr超能文献

一种通过图形模型进行数据整合的统计框架及其在癌症基因组学中的应用

A STATISTICAL FRAMEWORK FOR DATA INTEGRATION THROUGH GRAPHICAL MODELS WITH APPLICATION TO CANCER GENOMICS.

作者信息

Zhang Yuping, Ouyang Zhengqing, Zhao Hongyu

机构信息

DEPARTMENT OF STATISTICS, INSTITUTE FOR SYSTEMS GENOMICS, CENTER FOR QUANTITATIVE MEDICINE, INSTITUTE FOR COLLABORATION ON HEALTH, INTERVENTION, AND POLICY, THE CONNECTICUT INSTITUTE FOR THE BRAIN AND COGNITIVE SCIENCES, UNIVERSITY OF CONNECTICUT, STORRS, CONNECTICUT 06269, USA,

THE JACKSON LABORATORY FOR GENOMIC MEDICINE, DEPARTMENT OF BIOMEDICAL ENGINEERING, DEPARTMENT OF GENETICS AND GENOME SCIENCES, INSTITUTE FOR SYSTEMS GENOMICS, UNIVERSITY OF CONNECTICUT, FARMINGTON, CONNECTICUT 06030, USA,

出版信息

Ann Appl Stat. 2017 Mar;11(1):161-184. doi: 10.1214/16-AOAS998. Epub 2017 Apr 8.

Abstract

Recent advances in high-throughput biotechnologies have generated var-ious types of genetic, genomic, epigenetic, transcriptomic and proteomic data across different biological conditions. It is likely that integrating data from diverse experiments may lead to a more unified and global view of biolog-ical systems and complex diseases. We present a coherent statistical frame-work for integrating various types of data from distinct but related biological conditions through graphical models. Specifically, our statistical framework is designed for modeling multiple networks with shared regulatory mech-anisms from heterogeneous high-dimensional datasets. The performance of our approach is illustrated through simulations and its applications to cancer genomics.

摘要

高通量生物技术的最新进展已在不同生物条件下产生了各种类型的遗传、基因组、表观遗传、转录组和蛋白质组数据。整合来自不同实验的数据可能会使我们对生物系统和复杂疾病有更统一和全面的认识。我们提出了一个连贯的统计框架,用于通过图形模型整合来自不同但相关生物条件的各种类型的数据。具体而言,我们的统计框架旨在对来自异构高维数据集的具有共享调控机制的多个网络进行建模。通过模拟及其在癌症基因组学中的应用,说明了我们方法的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c987/6447291/ccfc7029b23d/nihms-1014982-f0001.jpg

相似文献

10
Integrating approximate single factor graphical models.集成近似单因素图形模型。
Stat Med. 2020 Jan 30;39(2):146-155. doi: 10.1002/sim.8408. Epub 2019 Nov 20.

本文引用的文献

1
Selection and estimation for mixed graphical models.混合图形模型的选择与估计
Biometrika. 2015 Mar;102(1):47-64. doi: 10.1093/biomet/asu051. Epub 2014 Dec 24.
3
Learning the Structure of Mixed Graphical Models.学习混合图形模型的结构
J Comput Graph Stat. 2015 Jan 1;24(1):230-253. doi: 10.1080/10618600.2014.900500.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验