Suppr超能文献

纳米脂质体包封维生素C的新制剂:粒径、稳定性及控释的制备与评估

New formulation of vitamin C encapsulation by nanoliposomes: production and evaluation of particle size, stability and control release.

作者信息

Amiri Samaneh, Rezazadeh-Bari Mahmoud, Alizadeh-Khaledabad Mohammad, Amiri Saber

机构信息

1Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran.

2Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.

出版信息

Food Sci Biotechnol. 2018 Oct 23;28(2):423-432. doi: 10.1007/s10068-018-0493-z. eCollection 2019 Apr.

Abstract

In the present study, the effects of different ratios of milk phospholipids, cholesterol and phytosterols (Campesterol) powder (50-100%, 0-50%, and 0-50%, respectively) and sonication time (20, 25, 30, 35 and 40 min) were investigated to produce a new formulation of nanoliposomes for encapsulation of vitamin C. The results showed that increasing the time of sonication and decreasing the ratio of phospholipid to phytosterol significantly decreased nanoliposomes' particle size ( < 0.05). The maximum encapsulation efficiency was obtained at 35 and 40 min of sonication time and 75-25 ratio of phospholipid: phytosterol. Also, reducing the sonication time in the same ratio of phospholipid/phytosterol caused to increase the controlled release. The highest stability of vitamin C during 20 days was obtained in the ratio of 75-25 (phospholipids: campesterol). The results showed a positive effect of cholesterol replacement with campesterol on encapsulation efficiency, control release and stability of vitamin C in nanoliposomes.

摘要

在本研究中,研究了不同比例的牛奶磷脂、胆固醇和植物甾醇(菜油甾醇)粉末(分别为50 - 100%、0 - 50%和0 - 50%)以及超声处理时间(20、25、30、35和40分钟)对制备用于包封维生素C的新型纳米脂质体配方的影响。结果表明,增加超声处理时间和降低磷脂与植物甾醇的比例显著降低了纳米脂质体的粒径(P < 0.05)。在超声处理时间为35和40分钟以及磷脂:植物甾醇比例为75 - 25时获得了最大包封效率。此外,在相同的磷脂/植物甾醇比例下减少超声处理时间导致控释增加。在20天内,维生素C在75 - 25(磷脂:菜油甾醇)比例下具有最高的稳定性。结果表明,用菜油甾醇替代胆固醇对纳米脂质体中维生素C的包封效率、控释和稳定性具有积极影响。

相似文献

1
New formulation of vitamin C encapsulation by nanoliposomes: production and evaluation of particle size, stability and control release.
Food Sci Biotechnol. 2018 Oct 23;28(2):423-432. doi: 10.1007/s10068-018-0493-z. eCollection 2019 Apr.
2
Optimization in the preparation of coenzyme Q10 nanoliposomes.
J Agric Food Chem. 2006 Aug 23;54(17):6358-66. doi: 10.1021/jf060405o.
5
Formulation and characterization of alprazolam-loaded nanoliposomes: screening of process variables and optimizing characteristics using RSM.
Drug Dev Ind Pharm. 2018 Feb;44(2):296-305. doi: 10.1080/03639045.2017.1391834. Epub 2017 Nov 2.
6
Preparation and Optimization of Ibrutinib-Loaded Nanoliposomes Using Response Surface Methodology.
Polymers (Basel). 2022 Sep 17;14(18):3886. doi: 10.3390/polym14183886.
9
Regulation of Nanoliposome Rigidity and Bioavailability of Oligomeric Proanthocyanidin with Phytosterols Containing Different C3 Branches.
ACS Appl Mater Interfaces. 2023 Sep 20;15(37):43414-43430. doi: 10.1021/acsami.3c07854. Epub 2023 Sep 5.
10
Formulation of nanoliposomal vitamin d3 for potential application in beverage fortification.
Adv Pharm Bull. 2014 Dec;4(Suppl 2):569-75. doi: 10.5681/apb.2014.084. Epub 2014 Dec 31.

引用本文的文献

1
Nutritional supplement containing a nuclear fraction of bovine thymus gland increases the circulating levels of spermidine.
PLoS One. 2025 Sep 9;20(9):e0331813. doi: 10.1371/journal.pone.0331813. eCollection 2025.
2
3
Tuning Hyaluronic Acid Microstructures by Engineered Amphiphilicity: From Dynamically Cross-Linked Gels to Multilayered Nanoparticles.
ACS Appl Mater Interfaces. 2025 Jun 4;17(22):31909-31922. doi: 10.1021/acsami.5c04736. Epub 2025 May 25.
5
Comprehensive review of resveratrol as a feed additive in dairy cows: exploring its potential diverse effects and implications.
Vet Res Commun. 2023 Sep;47(3):1115-1124. doi: 10.1007/s11259-023-10157-3. Epub 2023 Jul 8.
8
Current Applications of Liposomes for the Delivery of Vitamins: A Systematic Review.
Nanomaterials (Basel). 2023 May 5;13(9):1557. doi: 10.3390/nano13091557.
9
Encapsulation of Vitamins Using Nanoliposome: Recent Advances and Perspectives.
Adv Pharm Bull. 2023 Jan;13(1):48-68. doi: 10.34172/apb.2023.005. Epub 2021 Oct 10.
10
Stability of vitamin A, E, C and thiamine during storage of different powdered enteral formulas.
Heliyon. 2022 Nov 12;8(11):e11460. doi: 10.1016/j.heliyon.2022.e11460. eCollection 2022 Nov.

本文引用的文献

2
Formulation of nanoliposomal vitamin d3 for potential application in beverage fortification.
Adv Pharm Bull. 2014 Dec;4(Suppl 2):569-75. doi: 10.5681/apb.2014.084. Epub 2014 Dec 31.
3
Food nanotechnology - an overview.
Nanotechnol Sci Appl. 2010 May 4;3:1-15.
6
Ultrasound, liposomes, and drug delivery: principles for using ultrasound to control the release of drugs from liposomes.
Chem Phys Lipids. 2009 Nov;162(1-2):1-16. doi: 10.1016/j.chemphyslip.2009.08.003. Epub 2009 Aug 22.
8
Nanoliposomes and their applications in food nanotechnology.
J Liposome Res. 2008;18(4):309-27. doi: 10.1080/08982100802465941.
9
The role of cavitation in liposome formation.
Biophys J. 2007 Dec 15;93(12):4100-7. doi: 10.1529/biophysj.107.104042. Epub 2007 Aug 31.
10
Potential uses and benefits of phytosterols in diet: present situation and future directions.
Clin Nutr. 2003 Aug;22(4):343-51. doi: 10.1016/s0261-5614(03)00060-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验