Suppr超能文献

体温测量与体温解读

Thermometry and interpretation of body temperature.

作者信息

Chen Wenxi

机构信息

Biomedical Information Technology Laboratory, Research Center for Advanced Information Science and Technology, The University of Aizu, Aizu-Wakamatsu, Fukushima, Japan.

出版信息

Biomed Eng Lett. 2019 Feb 9;9(1):3-17. doi: 10.1007/s13534-019-00102-2. eCollection 2019 Feb.

Abstract

This article reviews the historical development and up-to-date state of thermometric technologies for measuring human body temperature (BT) from two aspects: measurement methodology and significance interpretation. Since the first systematic and comprehensive study on BT and its relation to human diseases was conducted by Wunderlich in the late 19th century, BT has served as one of the most fundamental vital signs for clinical diagnosis and daily healthcare. The physiological implication of BT set point and thermoregulatory mechanisms are briefly outlined. Influential determinants of BT measurement are investigated thoroughly. Three types of BT measurement, i.e., core body temperature, surface body temperature and basal body temperature, are categorized according to its measurement position and activity level. With the comparison of temperature measurement in industrial fields, specialties in technological and biological aspects in BT measurement are mentioned. Methodologies used in BT measurement are grouped into instrumental methods and mathematical methods. Instrumental methods utilize results of BT measurements directly from temperature-sensitive transducers and electronic instrumentations by the combination of actual and predictive measurement, invasive and noninvasive measurement. Mathematical methods use several numerical models, such as multiple regression model, autoregressive model, thermoregulatory mechanism-based model and the Kalman filter-based method to estimate BT indirectly from some relevant vital signs and environmental factors. Thermometry modalities are summarized on the dichotomies into invasive and noninvasive, contact and noncontact, direct and indirect, free and restrained, 1-D and n-D. Comprehensive interpretation of BT has an equal importance as the measurement of BT. Two modes to apply BT are classified into real-time applications and long-term applications. With rapid advancement in IoT infrastructure, big data analytics and AI platforms, prospects for future development in thermometry and interpretation of BT are discussed.

摘要

本文从测量方法和意义解读两个方面综述了用于测量人体体温(BT)的测温技术的历史发展和最新状况。自19世纪末温德利希对BT及其与人类疾病的关系进行首次系统全面的研究以来,BT一直是临床诊断和日常医疗保健中最基本的生命体征之一。简要概述了BT设定点的生理意义和体温调节机制。深入研究了影响BT测量的因素。根据测量位置和活动水平,将BT测量分为三种类型,即核心体温、体表温度和基础体温。通过与工业领域温度测量的比较,提及了BT测量在技术和生物学方面的特点。BT测量中使用的方法分为仪器法和数学法。仪器法通过实际测量与预测测量、侵入性测量与非侵入性测量相结合,直接利用温度敏感传感器和电子仪器的BT测量结果。数学法使用多种数值模型,如多元回归模型、自回归模型、基于体温调节机制的模型和基于卡尔曼滤波器的方法,从一些相关生命体征和环境因素间接估计BT。测温方式根据侵入性与非侵入性、接触式与非接触式、直接式与间接式、自由式与约束式、一维与多维进行分类总结。BT的综合解读与BT测量同等重要。BT的应用分为实时应用和长期应用两种模式。随着物联网基础设施、大数据分析和人工智能平台的快速发展,讨论了测温及BT解读的未来发展前景。

相似文献

1
Thermometry and interpretation of body temperature.
Biomed Eng Lett. 2019 Feb 9;9(1):3-17. doi: 10.1007/s13534-019-00102-2. eCollection 2019 Feb.
2
[Standard technical specifications for methacholine chloride (Methacholine) bronchial challenge test (2023)].
Zhonghua Jie He He Hu Xi Za Zhi. 2024 Feb 12;47(2):101-119. doi: 10.3760/cma.j.cn112147-20231019-00247.
3
A Comparison of Surface Infrared with Rectal Thermometry in Dogs.
Niger J Physiol Sci. 2017 Dec 30;32(2):123-127.
4
[Clinical thermometry. I. Historical developments].
Ned Tijdschr Geneeskd. 1997 May 10;141(19):954-6.
6
Body temperature and clinical thermometry.
Handb Clin Neurol. 2018;157:467-482. doi: 10.1016/B978-0-444-64074-1.00029-X.
7
Infrared Skin Thermometry: Validating and Comparing Techniques to Detect Periwound Skin Infection.
Adv Skin Wound Care. 2018 Jan;31(1):607-611. doi: 10.1097/01.ASW.0000527352.75716.70.
8
Comparative Analysis of Human Body Temperatures Measured with Noncontact and Contact Thermometers.
Healthcare (Basel). 2022 Feb 9;10(2):331. doi: 10.3390/healthcare10020331.
10

引用本文的文献

4
Infrared thermal modulation endoscopy for label-free tumor detection.
Sci Rep. 2024 Dec 30;14(1):31575. doi: 10.1038/s41598-024-76173-8.
5
Ocular surface heat flux density as a biomarker related to diabetic retinopathy (pilot study).
Adv Ophthalmol Pract Res. 2024 Mar 26;4(3):107-111. doi: 10.1016/j.aopr.2024.03.004. eCollection 2024 Aug-Sep.
6
Characteristics of Far-Infrared Ray Emitted from Functional Loess Bio-Balls and Its Effect on Improving Blood Flow.
Bioengineering (Basel). 2024 Apr 15;11(4):380. doi: 10.3390/bioengineering11040380.
8
Oral micro-electronic platform for temperature and humidity monitoring.
Sci Rep. 2023 Dec 2;13(1):21277. doi: 10.1038/s41598-023-48379-9.
9
Going beyond the means: Exploring the role of bias from digital determinants of health in technologies.
PLOS Digit Health. 2023 Oct 12;2(10):e0000244. doi: 10.1371/journal.pdig.0000244. eCollection 2023 Oct.
10
Applications of Infrared Thermography in Ophthalmology.
Life (Basel). 2023 Mar 8;13(3):723. doi: 10.3390/life13030723.

本文引用的文献

1
Issues in Continuous 24-h Core Body Temperature Monitoring in Humans Using an Ingestible Capsule Telemetric Sensor.
Front Endocrinol (Lausanne). 2017 Jun 13;8:130. doi: 10.3389/fendo.2017.00130. eCollection 2017.
2
Prediction of Core Body Temperature from Multiple Variables.
Ann Occup Hyg. 2015 Nov;59(9):1168-78. doi: 10.1093/annhyg/mev054. Epub 2015 Aug 12.
3
3D thermal medical image visualization tool: Integration between MRI and thermographic images.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:5583-6. doi: 10.1109/EMBC.2014.6944892.
4
Characterization of ultradian and circadian rhythms of core body temperature based on wavelet analysis.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:4220-3. doi: 10.1109/EMBC.2014.6944555.
5
Estimation of body temperature rhythm based on heart activity parameters in daily life.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:2245-8. doi: 10.1109/EMBC.2014.6944066.
6
Whole-body cryotherapy: empirical evidence and theoretical perspectives.
Open Access J Sports Med. 2014 Mar 10;5:25-36. doi: 10.2147/OAJSM.S41655. eCollection 2014.
7
An estimation of the number of cells in the human body.
Ann Hum Biol. 2013 Nov-Dec;40(6):463-71. doi: 10.3109/03014460.2013.807878. Epub 2013 Jul 5.
8
Estimation of human core temperature from sequential heart rate observations.
Physiol Meas. 2013 Jul;34(7):781-98. doi: 10.1088/0967-3334/34/7/781. Epub 2013 Jun 19.
9
Theoretical study on the inverse modeling of deep body temperature measurement.
Physiol Meas. 2012 Mar;33(3):429-43. doi: 10.1088/0967-3334/33/3/429. Epub 2012 Feb 28.
10
A real-time algorithm for predicting core temperature in humans.
IEEE Trans Inf Technol Biomed. 2010 Jul;14(4):1039-45. doi: 10.1109/TITB.2010.2043956. Epub 2010 Apr 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验