Suppr超能文献

利用单细胞转录组学识别可重复的转录调节因子共表达模式。

Identifying reproducible transcription regulator coexpression patterns with single cell transcriptomics.

作者信息

Morin Alexander, Chu Ching Pan, Pavlidis Paul

机构信息

Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.

Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada.

出版信息

PLoS Comput Biol. 2025 Apr 21;21(4):e1012962. doi: 10.1371/journal.pcbi.1012962. eCollection 2025 Apr.

Abstract

The proliferation of single cell transcriptomics has potentiated our ability to unveil patterns that reflect dynamic cellular processes such as the regulation of gene transcription. In this study, we leverage a broad collection of single cell RNA-seq data to identify the gene partners whose expression is most coordinated with each human and mouse transcription regulator (TR). We assembled 120 human and 103 mouse scRNA-seq datasets from the literature (>28 million cells), constructing a single cell coexpression network for each. We aimed to understand the consistency of TR coexpression profiles across a broad sampling of biological contexts, rather than examine the preservation of context-specific signals. Our workflow therefore explicitly prioritizes the patterns that are most reproducible across cell types. Towards this goal, we characterize the similarity of each TR's coexpression within and across species. We create single cell coexpression rankings for each TR, demonstrating that this aggregated information recovers literature curated targets on par with ChIP-seq data. We then combine the coexpression and ChIP-seq information to identify candidate regulatory interactions supported across methods and species. Finally, we highlight interactions for the important neural TR ASCL1 to demonstrate how our compiled information can be adopted for community use.

摘要

单细胞转录组学的发展增强了我们揭示反映动态细胞过程(如基因转录调控)模式的能力。在本研究中,我们利用大量单细胞RNA测序数据来识别那些与每个人类和小鼠转录调节因子(TR)表达最协调的基因伙伴。我们从文献中收集了120个人类和103个小鼠的单细胞RNA测序数据集(超过2800万个细胞),并为每个数据集构建了一个单细胞共表达网络。我们旨在了解TR共表达谱在广泛的生物学背景样本中的一致性,而不是研究特定背景信号的保留情况。因此,我们的工作流程明确优先考虑在不同细胞类型中最可重复的模式。为了实现这一目标,我们描述了每个TR在物种内和物种间共表达的相似性。我们为每个TR创建了单细胞共表达排名,表明这种汇总信息恢复了与ChIP-seq数据相当的文献整理靶点。然后,我们结合共表达和ChIP-seq信息,以识别跨方法和物种支持的候选调控相互作用。最后,我们突出了重要神经TR ASCL1的相互作用,以展示我们汇编的信息如何供社区使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcc1/12011263/62f63de35823/pcbi.1012962.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验