Suppr超能文献

通过从人类细胞图谱推断出的基因网络增强人类相互作用组以进行疾病预测。

Augmenting the human interactome for disease prediction through gene networks inferred from human cell atlas.

作者信息

Sung Euijeong, Cha Junha, Baek Seungbyn, Lee Insuk

机构信息

Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.

POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.

出版信息

Anim Cells Syst (Seoul). 2025 Mar 7;29(1):11-20. doi: 10.1080/19768354.2025.2472002. eCollection 2025.

Abstract

Gene co-expression network inference from bulk tissue samples often misses cell-type-specific interactions, which can be detected through single-cell gene expression data. However, the noise and sparsity of single-cell data challenge the inference of these networks. We developed scNET, a framework for integrative cell-type-specific co-expression network inference from single-cell transcriptome data, demonstrating its utility in augmenting the human interactome for more accurate disease gene prediction. We address the limitations of network inference from single-cell expression data through dropout imputation, metacell formation, and data transformation. Employing this data preprocessing pipeline, we inferred cell-type-specific co-expression links from single-cell atlas data, covering various cell types and tissues, and integrated over 850K of these inferred links into a preexisting human interactome, HumanNet, resulting in HumanNet-plus. This integration notably enhanced the accuracy of network-based disease gene prediction. These findings suggest that with proper data preprocessing, network inference from single-cell gene expression data can be highly effective, potentially enriching the human interactome and advancing the field of network medicine.

摘要

从大块组织样本推断基因共表达网络往往会遗漏细胞类型特异性的相互作用,而这些相互作用可通过单细胞基因表达数据检测到。然而,单细胞数据的噪声和稀疏性对这些网络的推断提出了挑战。我们开发了scNET,这是一个用于从单细胞转录组数据推断细胞类型特异性共表达网络的框架,证明了其在扩充人类相互作用组以进行更准确疾病基因预测方面的实用性。我们通过缺失值插补、元细胞形成和数据转换来解决从单细胞表达数据推断网络的局限性。利用这个数据预处理流程,我们从涵盖各种细胞类型和组织的单细胞图谱数据中推断出细胞类型特异性共表达链接,并将超过85万个这些推断出的链接整合到一个已有的人类相互作用组HumanNet中,得到了HumanNet-plus。这种整合显著提高了基于网络的疾病基因预测的准确性。这些发现表明,通过适当的数据预处理,从单细胞基因表达数据进行网络推断可以非常有效,有可能丰富人类相互作用组并推动网络医学领域的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad68/11892045/eba847ad3919/TACS_A_2472002_F0001_OC.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验