Suppr超能文献

主成分分析快速、无模型的多 b 值扩散加权磁共振图像去噪。

Principal component analysis fosr fast and model-free denoising of multi b-value diffusion-weighted MR images.

机构信息

Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom.

出版信息

Phys Med Biol. 2019 May 17;64(10):105015. doi: 10.1088/1361-6560/ab1786.

Abstract

Despite the utility of tumour characterisation using quantitative parameter maps from multi-b-value diffusion-weighted MRI (DWI), clinicians often prefer the use of the image with highest diffusion-weighting (b-value), for instance for defining regions of interest (ROIs). However, these images are typically degraded by noise, as they do not utilize the information from the full acquisition. We present a principal component analysis (PCA) approach for model-free denoising of DWI data. PCA-denoising was compared to synthetic MRI, where a diffusion model is fitted for each voxel and a denoised image at a given b-value is generated from the model fit. A quantitative comparison of systematic and random errors was performed on data simulated using several diffusion models (mono-exponential, bi-exponential, stretched-exponential and kurtosis). A qualitative visual comparison was also performed for in vivo images in six healthy volunteers and three pancreatic cancer patients. In simulations, the reduction in random errors from PCA-denoising was substantial (up to 55%) and similar to synthetic MRI (up to 53%). Model-based synthetic MRI denoising resulted in substantial (up to 29% of signal) systematic errors, whereas PCA-denoising was able to denoise without introducing systematic errors (less than 2%). In vivo, the signal-to-noise ratio (SNR) and sharpness of PCA-denoised images were superior to synthetic MRI, resulting in clearer tumour boundaries. In the presence of motion, PCA-denoising did not cause image blurring, unlike image averaging or synthetic MRI. Multi-b-value MRI can be denoised model-free with our PCA-denoising strategy that reduces noise to a level similar to synthetic MRI, but without introducing systematic errors associated with the synthetic MRI method.

摘要

尽管使用多 b 值扩散加权磁共振成像 (DWI) 的定量参数图对肿瘤进行特征描述非常有用,但临床医生通常更喜欢使用具有最高扩散加权 (b 值) 的图像,例如用于定义感兴趣区域 (ROI)。然而,这些图像通常会因噪声而降级,因为它们没有利用完整采集的信息。我们提出了一种用于 DWI 数据无模型去噪的主成分分析 (PCA) 方法。将 PCA 去噪与合成 MRI 进行了比较,在合成 MRI 中,为每个体素拟合扩散模型,并从模型拟合生成给定 b 值的去噪图像。使用几种扩散模型 (单指数、双指数、拉伸指数和峰度) 对模拟数据进行了系统误差和随机误差的定量比较。还对 6 名健康志愿者和 3 名胰腺癌患者的体内图像进行了定性视觉比较。在模拟中,PCA 去噪可显著降低随机误差(高达 55%),与合成 MRI 相似(高达 53%)。基于模型的合成 MRI 去噪会导致显著的系统误差(高达信号的 29%),而 PCA 去噪能够在不引入系统误差的情况下进行去噪(小于 2%)。在体内,PCA 去噪图像的信噪比 (SNR) 和锐度优于合成 MRI,从而使肿瘤边界更加清晰。在存在运动的情况下,与图像平均或合成 MRI 不同,PCA 去噪不会导致图像模糊。多 b 值 MRI 可以使用我们的 PCA 去噪策略进行无模型去噪,该策略可将噪声降低到与合成 MRI 相似的水平,但不会引入与合成 MRI 方法相关的系统误差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6726/7655121/e6651fc38ca5/pmbab1786f01_hr.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验