Asgharzadeh Hafez, Borazjani Iman
Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA.
Phys Fluids (1994). 2019 Mar;31(3):031904. doi: 10.1063/1.5033942. Epub 2019 Mar 26.
Non-dimensional parameters are routinely used to classify different flow regimes. We propose a non-dimensional parameter, called Aneurysm number (), which depends on both geometric and flow characteristics, to classify the flow inside aneurysm-like geometries (sidewalls and bifurcations). The flow inside aneurysm-like geometries can be widely classified into (i) the vortex mode in which a vortex ring is formed and (ii) the cavity mode in which a stationary shear layer acts similar to a moving lid of a lid-driven cavity. In these modes, two competing time scales exist: (a) a transport time scale, , which is the time scale to develop a shear layer by transporting a fluid particle across the expansion region, and (b) the vortex formation time scale, . Consequently, a relevant non-dimensional parameter is the ratio of these two time scales, which is called Aneurysm number: = / . It is hypothesized, based on this definition, that the flow is in the vortex mode if the time required for vortex ring formation is less than the transport time ( ≳ 1). Otherwise, the flow is in the cavity mode ( ≲ 1). This hypothesis is systematically tested through numerical simulations on simplified geometries and shown to be true through flow visualizations and identification of the main vortex and shear layer. The main vortex is shown to evolve when ≳ 1 but stationary when ≲ 1. In fact, it is shown that the flows with ≲ 1 (cavity mode) are characterized by much smaller fluctuations of wall shear stress and oscillatory shear index relative to flows with ≳ 1 (vortex mode) because of their quasi-stationary flow pattern (cavity mode) compared to the evolution and breakdown of the formed vortex ring (vortex mode).
无量纲参数通常用于对不同的流动状态进行分类。我们提出了一个无量纲参数,称为动脉瘤数(),它取决于几何和流动特性,用于对动脉瘤样几何结构(侧壁和分叉处)内的流动进行分类。动脉瘤样几何结构内的流动可广泛分为:(i)形成涡环的涡旋模式,以及(ii)静止剪切层的作用类似于顶盖驱动腔的移动顶盖的腔模式。在这些模式中,存在两个相互竞争的时间尺度:(a)输运时间尺度,,即通过将流体颗粒输送过膨胀区域来发展剪切层的时间尺度,以及(b)涡旋形成时间尺度,。因此,一个相关的无量纲参数是这两个时间尺度的比值,称为动脉瘤数: = / 。基于此定义,假设如果涡环形成所需的时间小于输运时间 (≳1),则流动处于涡旋模式。否则,流动处于腔模式(≲1)。通过对简化几何结构的数值模拟对这一假设进行了系统测试,并通过流动可视化以及对主要涡旋和剪切层的识别证明其是正确的。当≳1时,主要涡旋会演变,而当≲1时则静止。事实上,结果表明,与≳1(涡旋模式)的流动相比,≲1(腔模式)的流动的壁面剪应力和振荡剪切指数的波动要小得多,这是因为其准稳态流动模式(腔模式)与形成的涡环的演变和破裂(涡旋模式)相比。