Suppr超能文献

单细胞测序分析的信息方法。

An Informative Approach to Single-Cell Sequencing Analysis.

机构信息

Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.

出版信息

Adv Exp Med Biol. 2019;1129:81-96. doi: 10.1007/978-981-13-6037-4_6.

Abstract

Recent advances in sequencing technologies enable us to obtain genome, epigenome and transcriptome data in individual cells. In this review, we describe various platforms for single-cell sequencing analysis across multiple layers. We mainly introduce an automated single-cell RNA-seq platform, the Chromium Single Cell 3' RNA-seq system, and its technical features and compare it with other single-cell RNA-seq systems. We also describe computational methods for analyzing large, complex single-cell datasets. Due to the insufficient depth of single-cell RNA-seq data, resulting in a critical lack of transcriptome information for low-expressed genes, it is occasionally difficult to interpret the data as is. To overcome the analytical problems for such sparse datasets, there are many bioinformatics reports that provide informative approaches, including imputation, correction of batch effects, dimensional reduction and clustering.

摘要

近年来,测序技术的进步使我们能够在单个细胞中获得基因组、表观基因组和转录组数据。在这篇综述中,我们描述了跨多个层面进行单细胞测序分析的各种平台。我们主要介绍了一种自动化的单细胞 RNA-seq 平台,即 Chromium Single Cell 3' RNA-seq 系统,及其技术特点,并将其与其他单细胞 RNA-seq 系统进行了比较。我们还描述了用于分析大型、复杂单细胞数据集的计算方法。由于单细胞 RNA-seq 数据的深度不足,导致低表达基因的转录组信息严重缺乏,因此有时难以直接解释数据。为了克服此类稀疏数据集的分析问题,有许多生物信息学报告提供了有价值的方法,包括插补、批次效应校正、降维和聚类。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验