Suppr超能文献

一个多中心跨平台单细胞 RNA 测序参考数据集。

A multi-center cross-platform single-cell RNA sequencing reference dataset.

机构信息

Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA.

Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, P. R. China.

出版信息

Sci Data. 2021 Feb 2;8(1):39. doi: 10.1038/s41597-021-00809-x.

Abstract

Single-cell RNA sequencing (scRNA-seq) is developing rapidly, and investigators seeking to use this technology are left with a variety of options for both experimental platform and bioinformatics methods. There is an urgent need for scRNA-seq reference datasets for benchmarking of different scRNA-seq platforms and bioinformatics methods. To be broadly applicable, these should be generated from renewable, well characterized reference samples and processed in multiple centers across different platforms. Here we present a benchmark scRNA-seq dataset that includes 20 scRNA-seq datasets acquired either as mixtures or as individual samples from two biologically distinct cell lines for which a large amount of multi-platform whole genome sequencing data are also available. These scRNA-seq datasets were generated from multiple popular platforms across four sequencing centers. We believe the datasets we describe here will provide a resource that meets this need by allowing evaluation of various bioinformatics methods for scRNA-seq analyses, including but not limited to data preprocessing, imputation, normalization, clustering, batch correction, and differential analysis.

摘要

单细胞 RNA 测序 (scRNA-seq) 技术发展迅速,寻求使用该技术的研究人员在实验平台和生物信息学方法方面有多种选择。迫切需要 scRNA-seq 参考数据集,以对不同的 scRNA-seq 平台和生物信息学方法进行基准测试。为了广泛适用,这些数据集应来自可再生的、特征良好的参考样本,并在不同平台的多个中心进行处理。在这里,我们提出了一个基准 scRNA-seq 数据集,该数据集包含 20 个 scRNA-seq 数据集,这些数据集要么是来自两个生物学上不同的细胞系的混合物,要么是单个样本,这些细胞系也有大量的多平台全基因组测序数据。这些 scRNA-seq 数据集是由四个测序中心的多个流行平台生成的。我们相信,我们在这里描述的数据集将通过允许评估 scRNA-seq 分析的各种生物信息学方法(包括但不限于数据预处理、插补、归一化、聚类、批次校正和差异分析)来满足这一需求,提供一种资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e919/7854649/f1970435eece/41597_2021_809_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验