Suppr超能文献

微流控环境中蛋白质合成的磁性追踪——挑战与展望

Magnetic Tracking of Protein Synthesis in Microfluidic Environments-Challenges and Perspectives.

作者信息

Wegener Melanie, Ennen Inga, Walhorn Volker, Anselmetti Dario, Hütten Andreas, Dietz Karl-Josef

机构信息

Department of Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, D-33615 Bielefeld, Germany.

Center for Spinelectronic Materials and Devices, Faculty of Physics, Bielefeld University, D-33615 Bielefeld, Germany.

出版信息

Nanomaterials (Basel). 2019 Apr 9;9(4):585. doi: 10.3390/nano9040585.

Abstract

A novel technique to study protein synthesis is proposed that uses magnetic nanoparticles in combination with microfluidic devices to achieve new insights into translational regulation. Cellular protein synthesis is an energy-demanding process which is tightly controlled and is dependent on environmental and developmental requirements. Processivity and regulation of protein synthesis as part of the posttranslational nano-machinery has now moved back into the focus of cell biology, since it became apparent that multiple mechanisms are in place for fine-tuning of translation and conditional selection of transcripts. Recent methodological developments, such as ribosome foot printing, propel current research. Here we propose a strategy to open up a new field of labelling, separation, and analysis of specific polysomes using superparamagnetic particles following pharmacological arrest of translation during cell lysis and subsequent analysis. Translation occurs in polysomes, which are assemblies of specific transcripts, associated ribosomes, nascent polypeptides, and other factors. This supramolecular structure allows for unique approaches to selection of polysomes by targeting the specific transcript, ribosomes, or nascent polypeptides. Once labeled with functionalized superparamagnetic particles, such assemblies can be separated in microfluidic devices or magnetic ratchets and quantified. Insights into the dynamics of translation is obtained through quantifying large numbers of ribosomes along different locations of the polysome. Thus, an entire new concept for , , and eventually single cell analysis will be realized and will allow for magnetic tracking of protein synthesis.

摘要

本文提出了一种研究蛋白质合成的新技术,该技术利用磁性纳米颗粒与微流控装置相结合,以获得对翻译调控的新见解。细胞蛋白质合成是一个需要能量的过程,受到严格控制,并取决于环境和发育需求。作为翻译后纳米机器的一部分,蛋白质合成的持续性和调控现已重新成为细胞生物学的焦点,因为很明显,存在多种机制来微调翻译和对转录本进行条件选择。最近的方法学进展,如核糖体足迹法,推动了当前的研究。在这里,我们提出了一种策略,即在细胞裂解过程中对翻译进行药理学阻断后,使用超顺磁性颗粒对特定多核糖体进行标记、分离和分析,并随后进行分析。翻译发生在多核糖体中,多核糖体是特定转录本、相关核糖体、新生多肽和其他因子的集合体。这种超分子结构允许通过靶向特定转录本、核糖体或新生多肽来选择多核糖体的独特方法。一旦用功能化的超顺磁性颗粒标记,这样的集合体就可以在微流控装置或磁性棘轮中分离并进行定量。通过对沿着多核糖体不同位置的大量核糖体进行定量,可获得对翻译动力学的见解。因此,将实现一个全新的用于 、 以及最终单细胞分析的概念,并将允许对蛋白质合成进行磁性追踪。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25f4/6523551/c0c5881ade6e/nanomaterials-09-00585-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验