Suppr超能文献

在翻译组分析中表征无活性核糖体。

Characterizing inactive ribosomes in translational profiling.

作者信息

Liu Botao, Qian Shu-Bing

机构信息

Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA; Graduate Field of Genetics, Genomics, and Development, Cornell University, Ithaca, NY, USA; Present address: Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.

Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA; Graduate Field of Genetics, Genomics, and Development, Cornell University, Ithaca, NY, USA.

出版信息

Translation (Austin). 2016 Jan 8;4(1):e1138018. doi: 10.1080/21690731.2015.1138018. eCollection 2016 Jan-Jun.

Abstract

The broad impact of translational regulation has emerged explosively in the last few years in part due to the technological advance in genome-wide interrogation of gene expression. During mRNA translation, the majority of actively translating ribosomes exist as polysomes in cells with multiple ribosomes loaded on a single transcript. The importance of the monosome, however, has been less appreciated in translational profiling analysis. Here we report that the monosome fraction isolated by sucrose sedimentation contains a large quantity of inactive ribosomes that do not engage on mRNAs to direct translation. We found that the elongation factor eEF2, but not eEF1A, stably resides in these non-translating ribosomes. This unique feature permits direct evaluation of ribosome status under various stress conditions and in the presence of translation inhibitors. Ribosome profiling reveals that the monosome has a similar but not identical pattern of ribosome footprints compared to the polysome. We show that the association of free ribosomal subunits minimally contributes to ribosome occupancy outside of the coding region. Our results not only offer a quantitative method to monitor ribosome availability, but also uncover additional layers of ribosome status needed to be considered in translational profiling analysis.

摘要

翻译调控的广泛影响在过去几年中迅速显现,部分原因是全基因组基因表达检测技术的进步。在mRNA翻译过程中,大多数正在进行翻译的核糖体以多聚核糖体的形式存在于细胞中,单个转录本上负载有多个核糖体。然而,单体核糖体在翻译谱分析中的重要性却较少受到关注。在此,我们报告通过蔗糖沉降分离得到的单体核糖体部分含有大量不参与mRNA翻译指导的无活性核糖体。我们发现,延伸因子eEF2而非eEF1A稳定存在于这些非翻译核糖体中。这一独特特性使得在各种应激条件下以及存在翻译抑制剂的情况下能够直接评估核糖体状态。核糖体谱分析表明,与多聚核糖体相比,单体核糖体具有相似但不完全相同的核糖体足迹模式。我们表明,游离核糖体亚基的结合对编码区以外的核糖体占据率贡献极小。我们的结果不仅提供了一种监测核糖体可用性的定量方法,还揭示了翻译谱分析中需要考虑的核糖体状态的其他层面。

相似文献

1
Characterizing inactive ribosomes in translational profiling.
Translation (Austin). 2016 Jan 8;4(1):e1138018. doi: 10.1080/21690731.2015.1138018. eCollection 2016 Jan-Jun.
2
Monosomes buffer translational stress to allow for active ribosome elongation.
Front Mol Biosci. 2023 May 26;10:1158043. doi: 10.3389/fmolb.2023.1158043. eCollection 2023.
3
Ribosomes in RNA Granules Are Stalled on mRNA Sequences That Are Consensus Sites for FMRP Association.
J Neurosci. 2023 Apr 5;43(14):2440-2459. doi: 10.1523/JNEUROSCI.1002-22.2023. Epub 2023 Feb 27.
4
High-Resolution Ribosome Profiling Defines Discrete Ribosome Elongation States and Translational Regulation during Cellular Stress.
Mol Cell. 2019 Mar 7;73(5):959-970.e5. doi: 10.1016/j.molcel.2018.12.009. Epub 2019 Jan 24.
6
Active Ribosome Profiling with RiboLace: From Bench to Data Analysis.
Methods Mol Biol. 2021;2252:201-220. doi: 10.1007/978-1-0716-1150-0_9.
7
Global Assessment of Protein Translation in Mammalian Cells Using Polysome Fractionation.
Methods Mol Biol. 2023;2666:157-164. doi: 10.1007/978-1-0716-3191-1_12.
8
Fluorescent Polysome Profiling in .
Bio Protoc. 2020 Sep 5;10(17):e3742. doi: 10.21769/BioProtoc.3742.
10
Redefining the Translational Status of 80S Monosomes.
Cell. 2016 Feb 11;164(4):757-69. doi: 10.1016/j.cell.2016.01.003.

引用本文的文献

2
Ribosome association inhibits stress-induced gene mRNA localization to stress granules.
Genes Dev. 2025 Jul 1;39(13-14):826-848. doi: 10.1101/gad.352899.125.
4
Monosome Stalls the Translation Process Mediated by IGF2BP in Arcuate Nucleus for Puberty Onset Delay.
Mol Neurobiol. 2025 Mar;62(3):3167-3181. doi: 10.1007/s12035-024-04450-8. Epub 2024 Sep 5.
5
Implication of Stm1 in the protection of eIF5A, eEF2 and tRNA through dormant ribosomes.
Front Mol Biosci. 2024 Apr 18;11:1395220. doi: 10.3389/fmolb.2024.1395220. eCollection 2024.
6
TORC1 phosphorylates and inhibits the ribosome preservation factor Stm1 to activate dormant ribosomes.
EMBO J. 2023 Mar 1;42(5):e112344. doi: 10.15252/embj.2022112344. Epub 2023 Jan 24.
7
Selective footprinting of 40S and 80S ribosome subpopulations (Sel-TCP-seq) to study translation and its control.
Nat Protoc. 2022 Oct;17(10):2139-2187. doi: 10.1038/s41596-022-00708-4. Epub 2022 Jul 22.
8
Viral and cellular translation during SARS-CoV-2 infection.
FEBS Open Bio. 2022 Sep;12(9):1584-1601. doi: 10.1002/2211-5463.13413. Epub 2022 Apr 25.
9
The space between notes: emerging roles for translationally silent ribosomes.
Trends Biochem Sci. 2022 Jun;47(6):477-491. doi: 10.1016/j.tibs.2022.02.003. Epub 2022 Mar 1.
10
Discovery of C13-Aminobenzoyl Cycloheximide Derivatives that Potently Inhibit Translation Elongation.
J Am Chem Soc. 2021 Sep 1;143(34):13473-13477. doi: 10.1021/jacs.1c05146. Epub 2021 Aug 17.

本文引用的文献

1
Long non-coding RNAs as a source of new peptides.
Elife. 2014 Sep 16;3:e03523. doi: 10.7554/eLife.03523.
2
Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes.
Cell Rep. 2014 Sep 11;8(5):1365-79. doi: 10.1016/j.celrep.2014.07.045. Epub 2014 Aug 21.
3
Extensive translation of small Open Reading Frames revealed by Poly-Ribo-Seq.
Elife. 2014 Aug 21;3:e03528. doi: 10.7554/eLife.03528.
4
The scanning mechanism of eukaryotic translation initiation.
Annu Rev Biochem. 2014;83:779-812. doi: 10.1146/annurev-biochem-060713-035802. Epub 2014 Jan 29.
5
Ribosome profiling: new views of translation, from single codons to genome scale.
Nat Rev Genet. 2014 Mar;15(3):205-13. doi: 10.1038/nrg3645. Epub 2014 Jan 28.
6
Translational reprogramming in cellular stress response.
Wiley Interdiscip Rev RNA. 2014 May-Jun;5(3):301-15. doi: 10.1002/wrna.1212. Epub 2013 Dec 23.
7
Crystal structures of EF-G-ribosome complexes trapped in intermediate states of translocation.
Science. 2013 Jun 28;340(6140):1236086. doi: 10.1126/science.1236086.
8
Control of ribosomal subunit rotation by elongation factor G.
Science. 2013 Jun 28;340(6140):1235970. doi: 10.1126/science.1235970.
9
Elongation factor G bound to the ribosome in an intermediate state of translocation.
Science. 2013 Jun 28;340(6140):1235490. doi: 10.1126/science.1235490.
10
Structures of the human and Drosophila 80S ribosome.
Nature. 2013 May 2;497(7447):80-5. doi: 10.1038/nature12104.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验