School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA.
Lillian Gilbreth Fellowship Program, College of Engineering, Purdue University, West Lafayette, IN, 47907, USA.
Nat Commun. 2019 Apr 10;10(1):1651. doi: 10.1038/s41467-019-09660-6.
Functional interfaces between electronics and biological matter are essential to diverse fields including health sciences and bio-engineering. Here, we report the discovery of spontaneous (no external energy input) hydrogen transfer from biological glucose reactions into SmNiO, an archetypal perovskite quantum material. The enzymatic oxidation of glucose is monitored down to ~5 × 10 M concentration via hydrogen transfer to the nickelate lattice. The hydrogen atoms donate electrons to the Ni d orbital and induce electron localization through strong electron correlations. By enzyme specific modification, spontaneous transfer of hydrogen from the neurotransmitter dopamine can be monitored in physiological media. We then directly interface an acute mouse brain slice onto the nickelate devices and demonstrate measurement of neurotransmitter release upon electrical stimulation of the striatum region. These results open up avenues for use of emergent physics present in quantum materials in trace detection and conveyance of bio-matter, bio-chemical sciences, and brain-machine interfaces.
电子和生物物质之间的功能界面对于包括健康科学和生物工程在内的多个领域都是至关重要的。在这里,我们报告了在生物葡萄糖反应中自发(无需外部能量输入)将氢转移到 SmNiO 的发现,SmNiO 是典型的钙钛矿量子材料。通过氢转移到镍酸盐晶格,监测到葡萄糖的酶促氧化,其浓度低至约 5×10-7 M。氢原子将电子捐赠给 Ni d 轨道,并通过强电子相关作用诱导电子局域化。通过酶的特异性修饰,可以在生理介质中监测到来自神经递质多巴胺的氢的自发转移。然后,我们将急性小鼠脑切片直接连接到镍酸盐器件上,并证明了在纹状体区域电刺激时测量神经递质释放。这些结果为在痕量检测和生物物质、生物化学科学以及脑机接口中利用量子材料中出现的新兴物理开辟了途径。