Suppr超能文献

磷酸盐在骨骼中的作用。

Roles of Phosphate in Skeleton.

作者信息

Michigami Toshimi, Ozono Keiichi

机构信息

Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Japan.

Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan.

出版信息

Front Endocrinol (Lausanne). 2019 Mar 26;10:180. doi: 10.3389/fendo.2019.00180. eCollection 2019.

Abstract

Phosphate is essential for skeletal mineralization, and its chronic deficiency leads to rickets and osteomalacia. Skeletal mineralization starts in matrix vesicles (MVs) derived from the plasma membrane of osteoblasts and chondrocytes. MVs contain high activity of tissue non-specific alkaline phosphatase (TNSALP), which hydrolyzes phosphoric esters such as pyrophosphates (PPi) to produce inorganic orthophosphates (Pi). Extracellular Pi in the skeleton is taken up by MVs through type III sodium/phosphate (Na/Pi) cotransporters and forms hydroxyapatite. In addition to its roles in MV-mediated skeletal mineralization, accumulating evidence has revealed that extracellular Pi evokes signal transduction and regulates cellular function. Pi induces apoptosis of hypertrophic chondrocytes, which is a critical step for endochondral ossification. Extracellular Pi also regulates the expression of various genes including those related to proliferation, differentiation, and mineralization. cell studies have demonstrated that an elevation in extracellular Pi level leads to the activation of fibroblast growth factor receptor (FGFR), Raf/MEK (mitogen-activated protein kinase/ERK kinase)/ERK (extracellular signal-regulated kinase) pathway, where the type III Na/Pi cotransporter PiT-1 may be involved. Responsiveness of skeletal cells to extracellular Pi suggests their ability to sense and adapt to an alteration in Pi availability in their environment. Involvement of FGFR in the Pi-evoked signal transduction is interesting because enhanced FGFR signaling in osteoblasts/osteocytes might be responsible for the overproduction of FGF23, a key molecule in phosphate homeostasis, in a mouse model for human X-linked hypophosphatemic rickets (XLH). Impaired Pi sensing may be a pathogenesis of XLH, which needs to be clarified in future.

摘要

磷酸盐对骨骼矿化至关重要,其长期缺乏会导致佝偻病和骨软化症。骨骼矿化始于源自成骨细胞和软骨细胞膜的基质小泡(MVs)。MVs含有高活性的组织非特异性碱性磷酸酶(TNSALP),它能水解焦磷酸等磷酸酯以产生无机正磷酸盐(Pi)。骨骼中的细胞外Pi通过III型钠/磷酸盐(Na/Pi)共转运蛋白被MVs摄取并形成羟基磷灰石。除了在MV介导的骨骼矿化中的作用外,越来越多的证据表明细胞外Pi能引发信号转导并调节细胞功能。Pi诱导肥大软骨细胞凋亡,这是软骨内骨化的关键步骤。细胞外Pi还调节包括与增殖、分化和矿化相关基因在内的各种基因的表达。细胞研究表明,细胞外Pi水平升高会导致成纤维细胞生长因子受体(FGFR)、Raf/MEK(丝裂原活化蛋白激酶/ERK激酶)/ERK(细胞外信号调节激酶)途径的激活,其中III型Na/Pi共转运蛋白PiT-1可能参与其中。骨骼细胞对细胞外Pi的反应表明它们有能力感知并适应其环境中Pi可用性的变化。FGFR参与Pi引发的信号转导很有趣,因为在人类X连锁低磷性佝偻病(XLH)的小鼠模型中,成骨细胞/骨细胞中增强的FGFR信号可能是磷酸盐稳态关键分子FGF23过度产生的原因。Pi感知受损可能是XLH的发病机制之一,这有待未来阐明。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b96/6443631/58ae84ed6ab7/fendo-10-00180-g0001.jpg

相似文献

1
Roles of Phosphate in Skeleton.
Front Endocrinol (Lausanne). 2019 Mar 26;10:180. doi: 10.3389/fendo.2019.00180. eCollection 2019.
2
Skeletal mineralization: mechanisms and diseases.
Ann Pediatr Endocrinol Metab. 2019 Dec;24(4):213-219. doi: 10.6065/apem.2019.24.4.213. Epub 2019 Dec 31.
4
Extracellular phosphate as a signaling molecule.
Contrib Nephrol. 2013;180:14-24. doi: 10.1159/000346776. Epub 2013 May 3.
6
Phosphate as a Signaling Molecule and Its Sensing Mechanism.
Physiol Rev. 2018 Oct 1;98(4):2317-2348. doi: 10.1152/physrev.00022.2017.
7
The role of phosphatases in the initiation of skeletal mineralization.
Calcif Tissue Int. 2013 Oct;93(4):299-306. doi: 10.1007/s00223-012-9672-8. Epub 2012 Nov 27.
9
Distinct roles for intrinsic osteocyte abnormalities and systemic factors in regulation of FGF23 and bone mineralization in Hyp mice.
Am J Physiol Endocrinol Metab. 2007 Dec;293(6):E1636-44. doi: 10.1152/ajpendo.00396.2007. Epub 2007 Sep 11.
10
Extracellular Phosphate Induces the Expression of Dentin Matrix Protein 1 Through the FGF Receptor in Osteoblasts.
J Cell Biochem. 2017 May;118(5):1151-1163. doi: 10.1002/jcb.25742. Epub 2017 Jan 10.

引用本文的文献

1
Phosphate in Physiological and Pathological Mineralization: Important yet Often Unheeded.
MedComm (2020). 2025 Jul 13;6(7):e70298. doi: 10.1002/mco2.70298. eCollection 2025 Jul.
4
Stanniocalcin 1 and 1,25-dihydroxyvitamin D cooperatively regulate bone mineralization by osteoblasts.
Exp Mol Med. 2024 Sep;56(9):1991-2001. doi: 10.1038/s12276-024-01302-2. Epub 2024 Sep 2.
5
Multiscale and multidisciplinary analysis of aging processes in bone.
NPJ Aging. 2024 Jun 15;10(1):28. doi: 10.1038/s41514-024-00156-2.
6
Fluorescent monitoring osteogenic differentiation of osteosarcoma cells with an aggregation-induced emission probe.
Heliyon. 2024 May 22;10(11):e31664. doi: 10.1016/j.heliyon.2024.e31664. eCollection 2024 Jun 15.
7
Inorganic Pyrophosphate at Serum Concentration May Not Be Able to Inhibit Mineralization: A Study in Aqueous Solutions and Serum.
ACS Omega. 2024 Apr 6;9(15):17334-17343. doi: 10.1021/acsomega.3c10427. eCollection 2024 Apr 16.
9
Structure and function of the membrane microdomains in osteoclasts.
Bone Res. 2023 Nov 21;11(1):61. doi: 10.1038/s41413-023-00294-5.

本文引用的文献

1
Phosphate as a Signaling Molecule and Its Sensing Mechanism.
Physiol Rev. 2018 Oct 1;98(4):2317-2348. doi: 10.1152/physrev.00022.2017.
3
Extracellular Phosphate Induces the Expression of Dentin Matrix Protein 1 Through the FGF Receptor in Osteoblasts.
J Cell Biochem. 2017 May;118(5):1151-1163. doi: 10.1002/jcb.25742. Epub 2017 Jan 10.
4
Hypophosphatasia - aetiology, nosology, pathogenesis, diagnosis and treatment.
Nat Rev Endocrinol. 2016 Apr;12(4):233-46. doi: 10.1038/nrendo.2016.14. Epub 2016 Feb 19.
6
Global Consensus Recommendations on Prevention and Management of Nutritional Rickets.
J Clin Endocrinol Metab. 2016 Feb;101(2):394-415. doi: 10.1210/jc.2015-2175. Epub 2016 Jan 8.
8
Mutations in XPR1 cause primary familial brain calcification associated with altered phosphate export.
Nat Genet. 2015 Jun;47(6):579-81. doi: 10.1038/ng.3289. Epub 2015 May 4.
9
Phosphate enhances Fgf23 expression through reactive oxygen species in UMR-106 cells.
J Bone Miner Metab. 2016 Mar;34(2):132-9. doi: 10.1007/s00774-015-0651-9. Epub 2015 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验