Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America.
Medicine, Infectious Diseases & International Health, University of Virginia, Charlottesville, Virginia, United States of America.
PLoS Comput Biol. 2019 Apr 11;15(4):e1006507. doi: 10.1371/journal.pcbi.1006507. eCollection 2019 Apr.
The identification of genes essential for bacterial growth and survival represents a promising strategy for the discovery of antimicrobial targets. Essential genes can be identified on a genome-scale using transposon mutagenesis approaches; however, variability between screens and challenges with interpretation of essentiality data hinder the identification of both condition-independent and condition-dependent essential genes. To illustrate the scope of these challenges, we perform a large-scale comparison of multiple published Pseudomonas aeruginosa gene essentiality datasets, revealing substantial differences between the screens. We then contextualize essentiality using genome-scale metabolic network reconstructions and demonstrate the utility of this approach in providing functional explanations for essentiality and reconciling differences between screens. Genome-scale metabolic network reconstructions also enable a high-throughput, quantitative analysis to assess the impact of media conditions on the identification of condition-independent essential genes. Our computational model-driven analysis provides mechanistic insight into essentiality and contributes novel insights for design of future gene essentiality screens and the identification of core metabolic processes.
鉴定对细菌生长和存活至关重要的基因是发现抗菌靶点的一种很有前途的策略。可以使用转座子诱变方法在全基因组范围内鉴定必需基因;然而,筛选之间的可变性和必需性数据解释的挑战阻碍了条件独立和条件依赖必需基因的鉴定。为了说明这些挑战的范围,我们对多个已发表的铜绿假单胞菌基因必需性数据集进行了大规模比较,揭示了筛选之间的显著差异。然后,我们使用基因组规模的代谢网络重建来对必需性进行背景化,并证明了这种方法在为必需性提供功能解释以及调和筛选之间的差异方面的实用性。基因组规模的代谢网络重建还能够进行高通量、定量分析,以评估培养基条件对鉴定条件独立必需基因的影响。我们的计算模型驱动分析提供了对必需性的机制见解,并为未来的基因必需性筛选设计和核心代谢过程的鉴定提供了新的见解。