Suppr超能文献

基于贝叶斯因子的全基因组关联研究经济性状的调控基因网络分析在纯种猪群体中。

Bayes Factor-Based Regulatory Gene Network Analysis of Genome-Wide Association Study of Economic Traits in a Purebred Swine Population.

机构信息

Jung P&C Institute, Inc., 1504 U-TOWER, Yongin-si, Gyeonggi-do 16950, Korea.

Research & Development Center, PatentPia Inc., Seoul 06223, Korea.

出版信息

Genes (Basel). 2019 Apr 10;10(4):293. doi: 10.3390/genes10040293.

Abstract

Early stage prediction of economic trait performance is important and directly linked to profitability of farm pig production. Genome-wide association study (GWAS) has been applied to find causative genomic regions of traits. This study established a regulatory gene network using GWAS for critical economic pig characteristics, centered on easily measurable body fat thickness in live animals. We genotyped 2,681 pigs using Illumina Porcine SNP60, followed by GWAS to calculate Bayes factors for 47,697 single nucleotide polymorphisms (SNPs) of seven traits. Using this information, SNPs were annotated with specific genes near genome locations to establish the association weight matrix. The entire network consisted of 226 nodes and 6,921 significant edges. For in silico validation of their interactions, we conducted regulatory sequence analysis of predicted target genes of transcription factors (TFs). Three key regulatory TFs were identified to guarantee maximum coverage: AT-rich interaction domain 3B (ARID3B), glial cell missing homolog 1 (GCM1), and GLI family zinc finger 2 (GLI2). We identified numerous genes targeted by ARID3B, associated with cellular processes. GCM1 and GLI2 were involved in developmental processes, and their shared target genes regulated multicellular organismal process. This system biology-based function analysis might contribute to enhancing understanding of economic pig traits.

摘要

早期预测经济性状表现非常重要,直接关系到养猪生产的盈利能力。全基因组关联研究(GWAS)已被用于寻找性状的致病基因组区域。本研究利用 GWAS 建立了一个以活体动物中易于测量的体脂厚度为中心的关键经济猪特征的调控基因网络。我们使用 Illumina Porcine SNP60 对 2681 头猪进行了基因分型,然后进行 GWAS 计算了 7 个性状的 47697 个单核苷酸多态性(SNP)的贝叶斯因子。利用这些信息,将 SNPs 注释到基因组位置附近的特定基因上,以建立关联权重矩阵。整个网络由 226 个节点和 6921 个显著边缘组成。为了对其相互作用进行计算机验证,我们对预测转录因子(TF)靶基因的调控序列进行了分析。确定了三个关键的调控 TF 以保证最大的覆盖范围:富含 AT 的相互作用域 3B(ARID3B)、神经胶质细胞缺失同源物 1(GCM1)和 GLI 家族锌指 2(GLI2)。我们鉴定了许多由 ARID3B 靶向的与细胞过程相关的基因。GCM1 和 GLI2 参与发育过程,它们的共享靶基因调节多细胞生物过程。基于系统生物学的功能分析可能有助于提高对经济猪性状的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d262/6523153/1b58f24b00f5/genes-10-00293-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验