Centre for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University (NTU), 639798 Singapore.
School of Materials Science and Engineering, NTU, 639798 Singapore.
Proc Natl Acad Sci U S A. 2019 Apr 30;116(18):8685-8692. doi: 10.1073/pnas.1816835116. Epub 2019 Apr 11.
Biomineralization, the process by which mineralized tissues grow and harden via biogenic mineral deposition, is a relatively lengthy process in many mineral-producing organisms, resulting in challenges to study the growth and biomineralization of complex hard mineralized tissues. Arthropods are ideal model organisms to study biomineralization because they regularly molt their exoskeletons and grow new ones in a relatively fast timescale, providing opportunities to track mineralization of entire tissues. Here, we monitored the biomineralization of the mantis shrimp dactyl club-a model bioapatite-based mineralized structure with exceptional mechanical properties-immediately after ecdysis until the formation of the fully functional club and unveil an unusual development mechanism. A flexible membrane initially folded within the club cavity expands to form the new club's envelope. Mineralization proceeds inwards by mineral deposition from this membrane, which contains proteins regulating mineralization. Building a transcriptome of the club tissue and probing it with proteomic data, we identified and sequenced Club Mineralization Protein 1 (CMP-1), an abundant mildly phosphorylated protein from the flexible membrane suggested to be involved in calcium phosphate mineralization of the club, as indicated by in vitro studies using recombinant CMP-1. This work provides a comprehensive picture of the development of a complex hard tissue, from the secretion of its organic macromolecular template to the formation of the fully functional club.
生物矿化是指通过生物成因的矿物质沉积使矿化组织生长和硬化的过程,在许多产矿物质的生物中,这是一个相对漫长的过程,这给研究复杂硬矿化组织的生长和生物矿化带来了挑战。节肢动物是研究生物矿化的理想模式生物,因为它们经常蜕皮并在相对较快的时间尺度内生长出新的外骨骼,这为跟踪整个组织的矿化提供了机会。在这里,我们监测了螳螂虾尾刺矿化的过程——一种具有特殊机械性能的基于生物磷灰石的矿化结构——从蜕皮后立即到完全功能的尾刺形成,揭示了一种不寻常的发育机制。一个最初折叠在尾刺腔内部的柔性膜会膨胀,形成新尾刺的外壳。矿化过程是通过从这个膜中进行矿物质沉积来进行的,这个膜中含有调节矿化的蛋白质。构建了尾刺组织的转录组,并利用蛋白质组学数据进行了探测,我们鉴定并测序了 Club Mineralization Protein 1(CMP-1),这是一种来自柔性膜的丰富的轻度磷酸化蛋白,体外研究表明它参与了尾刺的磷酸钙矿化,这与使用重组 CMP-1 的体外研究结果一致。这项工作提供了一个复杂硬组织从其有机大分子模板的分泌到完全功能的尾刺形成的全面发展图景。