Suppr超能文献

深度学习移植肾冷冻切片中的全球肾小球硬化症。

Deep Learning Global Glomerulosclerosis in Transplant Kidney Frozen Sections.

出版信息

IEEE Trans Med Imaging. 2018 Dec;37(12):2718-2728. doi: 10.1109/TMI.2018.2851150. Epub 2018 Jun 27.

Abstract

Transplantable kidneys are in very limited supply. Accurate viability assessment prior to transplantation could minimize organ discard. Rapid and accurate evaluation of intra-operative donor kidney biopsies is essential for determining which kidneys are eligible for transplantation. The criterion for accepting or rejecting donor kidneys relies heavily on pathologist determination of the percent of glomeruli (determined from a frozen section) that are normal and sclerotic. This percentage is a critical measurement that correlates with transplant outcome. Inter- and intra-observer variability in donor biopsy evaluation is, however, significant. An automated method for determination of percent global glomerulosclerosis could prove useful in decreasing evaluation variability, increasing throughput, and easing the burden on pathologists. Here, we describe the development of a deep learning model that identifies and classifies non-sclerosed and sclerosed glomeruli in whole-slide images of donor kidney frozen section biopsies. This model extends a convolutional neural network (CNN) pre-trained on a large database of digital images. The extended model, when trained on just 48 whole slide images, exhibits slide-level evaluation performance on par with expert renal pathologists. Encouragingly, the model's performance is robust to slide preparation artifacts associated with frozen section preparation. The model substantially outperforms a model trained on image patches of isolated glomeruli, in terms of both accuracy and speed. The methodology overcomes the technical challenge of applying a pretrained CNN bottleneck model to whole-slide image classification. The traditional patch-based approach, while exhibiting deceptively good performance classifying isolated patches, does not translate successfully to whole-slide image segmentation in this setting. As the first model reported that identifies and classifies normal and sclerotic glomeruli in frozen kidney sections, and thus the first model reported in the literature relevant to kidney transplantation, it may become an essential part of donor kidney biopsy evaluation in the clinical setting.

摘要

移植肾脏的供应非常有限。在移植前进行准确的存活能力评估可以最大限度地减少器官废弃。快速准确地评估术中供体肾活检对于确定哪些肾脏适合移植至关重要。接受或拒绝供体肾脏的标准主要依赖于病理学家确定正常和硬化肾小球的百分比(通过冷冻切片确定)。这个百分比是与移植结果密切相关的关键指标。然而,供体活检评估的观察者间和观察者内变异性很大。一种用于确定肾小球整体硬化百分比的自动化方法可能有助于减少评估的变异性,提高通量,并减轻病理学家的负担。在这里,我们描述了一种深度学习模型的开发,该模型可用于识别和分类供体肾冷冻切片全切片图像中的非硬化和硬化肾小球。该模型扩展了一个在大型数字图像数据库上预训练的卷积神经网络(CNN)。扩展后的模型仅在 48 张全幻灯片图像上进行训练,在幻灯片级评估性能上与专家肾脏病理学家相当。令人鼓舞的是,该模型的性能对与冷冻切片制备相关的幻灯片制备伪影具有鲁棒性。就准确性和速度而言,该模型的性能大大优于基于孤立肾小球图像块训练的模型。该方法克服了将预训练的 CNN 瓶颈模型应用于全幻灯片图像分类的技术挑战。传统的基于补丁的方法在对孤立补丁进行分类时表现出看似很好的性能,但在这种情况下,它并不能成功地转化为全幻灯片图像分割。作为第一个报告在冷冻肾脏切片中识别和分类正常和硬化肾小球的模型,也是第一个报告与肾脏移植相关的模型,它可能成为临床环境中供体肾活检评估的重要组成部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09ff/6296264/1f5c11fef6b3/nihms-1515478-f0001.jpg

相似文献

1
Deep Learning Global Glomerulosclerosis in Transplant Kidney Frozen Sections.深度学习移植肾冷冻切片中的全球肾小球硬化症。
IEEE Trans Med Imaging. 2018 Dec;37(12):2718-2728. doi: 10.1109/TMI.2018.2851150. Epub 2018 Jun 27.
5
Deep learning segmentation of glomeruli on kidney donor frozen sections.肾供体冰冻切片上肾小球的深度学习分割
J Med Imaging (Bellingham). 2021 Nov;8(6):067501. doi: 10.1117/1.JMI.8.6.067501. Epub 2021 Dec 20.
7
Glomerulosclerosis identification in whole slide images using semantic segmentation.使用语义分割识别全切片图像中的肾小球硬化。
Comput Methods Programs Biomed. 2020 Feb;184:105273. doi: 10.1016/j.cmpb.2019.105273. Epub 2019 Dec 19.
9
Automated assessment of glomerulosclerosis and tubular atrophy using deep learning.使用深度学习自动评估肾小球硬化和肾小管萎缩。
Comput Med Imaging Graph. 2021 Jun;90:101930. doi: 10.1016/j.compmedimag.2021.101930. Epub 2021 May 2.

引用本文的文献

本文引用的文献

1
CNN cascades for segmenting sparse objects in gigapixel whole slide images.CNN 级联用于分割千兆像素全幻灯片图像中的稀疏对象。
Comput Med Imaging Graph. 2019 Jan;71:40-48. doi: 10.1016/j.compmedimag.2018.11.002. Epub 2018 Nov 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验