Suppr超能文献

一种基于深度学习的肾移植评估计算机辅助诊断系统:扩散、血氧水平依赖性功能磁共振成像及临床生物标志物

A DEEP LEARNING-BASED CAD SYSTEM FOR RENAL ALLOGRAFT ASSESSMENT: DIFFUSION, BOLD, AND CLINICAL BIOMARKERS.

作者信息

Shehata Mohamed, Ghazal Mohammed, Khalifeh Hadil Abu, Khalil Ashraf, Shalaby Ahmed, Dwyer Amy C, Bakr Ashraf M, Keynton Robert, El-Baz Ayman

机构信息

BioImaging Lab, Bioengineering Department, University of Louisville, Louisville, KY, USA.

Faculty of Engineering, Abu Dhabi University, Abu Dhabi, UAE.

出版信息

Proc Int Conf Image Proc. 2020 Oct;2020:355-359. doi: 10.1109/ICIP40778.2020.9190818. Epub 2020 Sep 30.

Abstract

Recently, studies for non-invasive renal transplant evaluation have been explored to control allograft rejection. In this paper, a computer-aided diagnostic system has been developed to accommodate with an early-stage renal transplant status assessment, called RT-CAD. Our model of this system integrated multiple sources for a more accurate diagnosis: two image-based sources and two clinical-based sources. The image-based sources included apparent diffusion coefficients (ADCs) and the amount of deoxygenated hemoglobin (R2*). More specifically, these ADCs were extracted from 47 diffusion weighted magnetic resonance imaging (DW-MRI) scans at 11 different -values (b0, b50, b100, …, b1000 s/mm), while the R2* values were extracted from 30 blood oxygen level-dependent MRI (BOLD-MRI) scans at 5 different echo times (2ms, 7ms, 12ms, 17ms, and 22ms). The clinical sources included serum creatinine (SCr) and creatinine clearance (CrCl). First, the kidney was segmented through the RT-CAD system using a geometric deformable model called a level-set method. Second, both ADCs and R2* were estimated for common patients (N = 30) and then were integrated with the corresponding SCr and CrCl. Last, these integrated biomarkers were considered the discriminatory features to be used as trainers and testers for future deep learning-based classifiers such as stacked auto-encoders (SAEs). We used a k-fold cross-validation criteria to evaluate the RT-CAD system diagnostic performance, which achieved the following scores: 93.3%, 90.0%, and 95.0% in terms of accuracy, sensitivity, and specificity in differentiating between acute renal rejection (AR) and non-rejection (NR). The reliability and completeness of the RT-CAD system was further accepted by the area under the curve score of 0.92. The conclusions ensured that the presented RT-CAD system has a high reliability to diagnose the status of the renal transplant in a non-invasive way.

摘要

最近,人们对用于无创肾移植评估的研究进行了探索,以控制同种异体移植排斥反应。在本文中,开发了一种计算机辅助诊断系统,用于早期肾移植状态评估,称为RT-CAD。该系统的模型集成了多个来源以进行更准确的诊断:两个基于图像的来源和两个基于临床的来源。基于图像的来源包括表观扩散系数(ADC)和脱氧血红蛋白量(R2*)。更具体地说,这些ADC是从47次不同b值(b0、b50、b100、…、b1000 s/mm)的扩散加权磁共振成像(DW-MRI)扫描中提取的,而R2值是从30次不同回波时间(2ms、7ms、12ms、17ms和22ms)的血氧水平依赖性功能磁共振成像(BOLD-MRI)扫描中提取的。临床来源包括血清肌酐(SCr)和肌酐清除率(CrCl)。首先,使用一种称为水平集方法的几何可变形模型通过RT-CAD系统对肾脏进行分割。其次,对普通患者(N = 30)估计ADC和R2,然后将其与相应的SCr和CrCl进行整合。最后,这些整合的生物标志物被视为判别特征,用作未来基于深度学习的分类器(如堆叠自动编码器(SAE))的训练器和测试器。我们使用k折交叉验证标准来评估RT-CAD系统的诊断性能,在区分急性肾排斥(AR)和无排斥(NR)方面,其准确率、灵敏度和特异性分别达到了93.3%、90.0%和95.0%。RT-CAD系统的可靠性和完整性通过曲线下面积得分为0.92进一步得到认可。结论确保了所提出的RT-CAD系统具有以无创方式诊断肾移植状态的高可靠性。

相似文献

7
A comprehensive non-invasive framework for diagnosing prostate cancer.一种用于诊断前列腺癌的综合性非侵入性框架。
Comput Biol Med. 2017 Feb 1;81:148-158. doi: 10.1016/j.compbiomed.2016.12.010. Epub 2016 Dec 23.

本文引用的文献

7
BOLD magnetic resonance imaging in nephrology.肾脏病学中的血氧水平依赖性功能磁共振成像
Int J Nephrol Renovasc Dis. 2018 Mar 13;11:103-112. doi: 10.2147/IJNRD.S112299. eCollection 2018.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验