Suppr超能文献

专题特邀评论:利用疾病动态模型改进动物疾病传入管理的前景。

BOARD INVITED REVIEW: Prospects for improving management of animal disease introductions using disease-dynamic models.

机构信息

Center for Epidemiology and Animal Health, United States Department of Agriculture-Veterinary Services, Fort Collins, CO.

National Wildlife Research Center, United States Department of Agriculture-Wildlife Services, Fort Collins, CO.

出版信息

J Anim Sci. 2019 May 30;97(6):2291-2307. doi: 10.1093/jas/skz125.

Abstract

Management and policy decisions are continually made to mitigate disease introductions in animal populations despite often limited surveillance data or knowledge of disease transmission processes. Science-based management is broadly recognized as leading to more effective decisions yet application of models to actively guide disease surveillance and mitigate risks remains limited. Disease-dynamic models are an efficient method of providing information for management decisions because of their ability to integrate and evaluate multiple, complex processes simultaneously while accounting for uncertainty common in animal diseases. Here we review disease introduction pathways and transmission processes crucial for informing disease management and models at the interface of domestic animals and wildlife. We describe how disease transmission models can improve disease management and present a conceptual framework for integrating disease models into the decision process using adaptive management principles. We apply our framework to a case study of African swine fever virus in wild and domestic swine to demonstrate how disease-dynamic models can improve mitigation of introduction risk. We also identify opportunities to improve the application of disease models to support decision-making to manage disease at the interface of domestic and wild animals. First, scientists must focus on objective-driven models providing practical predictions that are useful to those managing disease. In order for practical model predictions to be incorporated into disease management a recognition that modeling is a means to improve management and outcomes is important. This will be most successful when done in a cross-disciplinary environment that includes scientists and decision-makers representing wildlife and domestic animal health. Lastly, including economic principles of value-of-information and cost-benefit analysis in disease-dynamic models can facilitate more efficient management decisions and improve communication of model forecasts. Integration of disease-dynamic models into management and decision-making processes is expected to improve surveillance systems, risk mitigations, outbreak preparedness, and outbreak response activities.

摘要

尽管动物种群中的疾病传播过程的监测数据或知识往往有限,但仍不断做出管理和政策决策,以减轻疾病的传入。基于科学的管理被广泛认为可以做出更有效的决策,然而,应用模型来积极指导疾病监测和减轻风险的应用仍然有限。疾病动态模型是为管理决策提供信息的有效方法,因为它们能够同时整合和评估多个复杂过程,同时考虑到动物疾病中常见的不确定性。在这里,我们回顾了对告知家畜和野生动物界面处疾病管理和模型至关重要的疾病传入途径和传播过程。我们描述了疾病传播模型如何改善疾病管理,并提出了一个使用适应性管理原则将疾病模型集成到决策过程中的概念框架。我们将我们的框架应用于非洲猪瘟病毒在野生和家养猪中的案例研究,以展示疾病动态模型如何改善传入风险的缓解。我们还确定了改善疾病模型在管理家畜和野生动物界面处疾病方面的决策应用的机会。首先,科学家必须专注于提供对管理疾病有用的实际预测的目标驱动模型。为了将实际的模型预测纳入疾病管理,必须认识到建模是改善管理和结果的一种手段。当涉及到包括代表野生动物和家畜健康的科学家和决策者的跨学科环境时,这将是最成功的。最后,在疾病动态模型中纳入信息价值和成本效益分析的经济原则可以促进更有效的管理决策,并改善模型预测的沟通。将疾病动态模型集成到管理和决策过程中有望改善监测系统、风险缓解、暴发准备和暴发应对活动。

相似文献

2
Diseases at the livestock-wildlife interface: status, challenges, and opportunities in the United States.
Prev Vet Med. 2013 Jun 1;110(2):119-32. doi: 10.1016/j.prevetmed.2012.11.021. Epub 2012 Dec 14.
3
Adaptive risk-based targeted surveillance for foreign animal diseases at the wildlife-livestock interface.
Transbound Emerg Dis. 2022 Sep;69(5):e2329-e2340. doi: 10.1111/tbed.14576. Epub 2022 May 10.
5
6
Dealing with animal disease emergencies in Africa: prevention and preparedness.
Rev Sci Tech. 1999 Apr;18(1):59-65. doi: 10.20506/rst.18.1.1151.
8
African swine fever.
Onderstepoort J Vet Res. 2009 Mar;76(1):91-5.

引用本文的文献

1
Potential benefits of adaptive control strategies are outweighed by costs of infrequent, but dramatically larger disease outbreaks.
R Soc Open Sci. 2025 Aug 21;12(8):250598. doi: 10.1098/rsos.250598. eCollection 2025 Aug.
2
Surveillance Analysis and Sample Size Explorer (SASSE): Learning How to Plan Disease Surveillance in Wildlife.
Ecol Evol. 2025 Aug 15;15(8):e71991. doi: 10.1002/ece3.71991. eCollection 2025 Aug.
3
5
Targeted sampling reduces the uncertainty in force of infection estimates from serological surveillance.
Front Vet Sci. 2022 Jul 28;9:754255. doi: 10.3389/fvets.2022.754255. eCollection 2022.
6
Adaptive risk-based targeted surveillance for foreign animal diseases at the wildlife-livestock interface.
Transbound Emerg Dis. 2022 Sep;69(5):e2329-e2340. doi: 10.1111/tbed.14576. Epub 2022 May 10.
7
Investigating public support for biosecurity measures to mitigate pathogen transmission through the herpetological trade.
PLoS One. 2022 Jan 21;17(1):e0262719. doi: 10.1371/journal.pone.0262719. eCollection 2022.
8
A framework for surveillance of emerging pathogens at the human-animal interface: Pigs and coronaviruses as a case study.
Prev Vet Med. 2021 Mar;188:105281. doi: 10.1016/j.prevetmed.2021.105281. Epub 2021 Jan 27.

本文引用的文献

1
Taming wildlife disease: bridging the gap between science and management.
J Appl Ecol. 2013 Jun;50(3):702-712. doi: 10.1111/1365-2664.12084. Epub 2013 Apr 16.
2
Confronting models with data: the challenges of estimating disease spillover.
Philos Trans R Soc Lond B Biol Sci. 2019 Sep 30;374(1782):20180435. doi: 10.1098/rstb.2018.0435. Epub 2019 Aug 12.
3
Epidemic growth rates and host movement patterns shape management performance for pathogen spillover at the wildlife-livestock interface.
Philos Trans R Soc Lond B Biol Sci. 2019 Sep 30;374(1782):20180343. doi: 10.1098/rstb.2018.0343. Epub 2019 Aug 12.
4
Ecological interventions to prevent and manage zoonotic pathogen spillover.
Philos Trans R Soc Lond B Biol Sci. 2019 Sep 30;374(1782):20180342. doi: 10.1098/rstb.2018.0342. Epub 2019 Aug 12.
7
Spatial transmission of H5N2 highly pathogenic avian influenza between Minnesota poultry premises during the 2015 outbreak.
PLoS One. 2018 Sep 21;13(9):e0204262. doi: 10.1371/journal.pone.0204262. eCollection 2018.
10
Disease outbreak thresholds emerge from interactions between movement behavior, landscape structure, and epidemiology.
Proc Natl Acad Sci U S A. 2018 Jul 10;115(28):7374-7379. doi: 10.1073/pnas.1801383115. Epub 2018 Jun 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验