Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, 410073, Changsha, Hunan, P. R. China.
Department of Biochemistry, School of Life Sciences, Central South University, 410013, Changsha, Hunan, P. R. China.
J Mater Sci Mater Med. 2019 Apr 13;30(4):48. doi: 10.1007/s10856-019-6252-8.
Mesoporous bioactive glass (MBG) is performed as a bone tissue engineering material because of its good bioactivity, biocompatibility and osteoinducion characteristics. Here, we propose MBG with larger pores (MBG-L) adsorbed fibroblast growth factor (FGF) to facilitate osteoblast differentiation and matrix mineralization. Specifically, we observed that MBG-L promotes calcium deposit precipitation in vitro. In addition, adhesion, proliferation, differentiation and matrix mineralization were promoted after osteoblast cultured on MBG-L/FGF. Interestingly, we found that the transcriptional activity of the critical transcription factor Runx2 was increased through MAPK pathway after osteoblast cultured on MBG-L/FGF. Support for this result, we found that the expression of osteoblastic marker genes, Osteocalcin (Ocn), Osteopontin (Opn), and Runx2 were increased. Thus, our findings provided that MBG-L/FGF could be a promising new material in bone tissue engineering.
介孔生物活性玻璃(MBG)因其良好的生物活性、生物相容性和骨诱导特性而被用作骨组织工程材料。在这里,我们提出了具有更大孔的 MBG(MBG-L)吸附成纤维细胞生长因子(FGF)以促进成骨细胞分化和基质矿化。具体来说,我们观察到 MBG-L 促进了体外钙沉积物的沉淀。此外,在 MBG-L/FGF 上培养的成骨细胞后,细胞黏附、增殖、分化和基质矿化得到了促进。有趣的是,我们发现成骨细胞在 MBG-L/FGF 上培养后,通过 MAPK 通路增加了关键转录因子 Runx2 的转录活性。支持这一结果,我们发现成骨细胞标志物基因,骨钙素(Ocn)、骨桥蛋白(Opn)和 Runx2 的表达增加。因此,我们的研究结果表明,MBG-L/FGF 可能是骨组织工程中一种有前途的新材料。