Suppr超能文献

使用伯恩斯坦Copula估计多元离散分布。

Estimating Multivariate Discrete Distributions Using Bernstein Copulas.

作者信息

Fossaluza Victor, Esteves Luís Gustavo, Pereira Carlos Alberto de Bragança

机构信息

Institute of Mathematics and Statistics, Universidade de São Paulo, São Paulo, SP 05508-090, Brazil.

出版信息

Entropy (Basel). 2018 Mar 14;20(3):194. doi: 10.3390/e20030194.

Abstract

Measuring the dependence between random variables is one of the most fundamental problems in statistics, and therefore, determining the joint distribution of the relevant variables is crucial. Copulas have recently become an important tool for properly inferring the joint distribution of the variables of interest. Although many studies have addressed the case of continuous variables, few studies have focused on treating discrete variables. This paper presents a nonparametric approach to the estimation of joint discrete distributions with bounded support using copulas and Bernstein polynomials. We present an application in real obsessive-compulsive disorder data.

摘要

测量随机变量之间的相关性是统计学中最基本的问题之一,因此,确定相关变量的联合分布至关重要。Copulas函数最近已成为正确推断感兴趣变量联合分布的重要工具。尽管许多研究都涉及连续变量的情况,但很少有研究专注于处理离散变量。本文提出了一种使用Copulas函数和伯恩斯坦多项式来估计具有有界支撑的联合离散分布的非参数方法。我们展示了在真实强迫症数据中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7261/7512711/92b9ea2d9058/entropy-20-00194-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验