Suppr超能文献

多任务超声眼动网络:借助生成的超声医师注意力图检测胎儿标准平面

Multi-task SonoEyeNet: Detection of Fetal Standardized Planes Assisted by Generated Sonographer Attention Maps.

作者信息

Cai Yifan, Sharma Harshita, Chatelain Pierre, Noble J Alison

机构信息

Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK.

出版信息

Med Image Comput Comput Assist Interv. 2018 Sep;11070:871-879. doi: 10.1007/978-3-030-00928-1_98. Epub 2018 Sep 26.

Abstract

We present a novel multi-task convolutional neural network called Multi-task SonoEyeNet () that learns to generate clinically relevant visual attention maps using sonographer gaze tracking data on input ultrasound (US) video frames so as to assist standardized abdominal circumference (AC) plane detection. Our architecture consists of a generator and a discriminator, which are trained in an adversarial scheme. The generator learns sonographer attention on a given US video frame to predict the frame label (standardized AC plane / background). The discriminator further fine-tunes the predicted attention map by encouraging it to mimick the ground-truth sonographer attention map. The novel model expands the potential clinical usefulness of a previous model by eliminating the requirement of input gaze tracking data during inference without compromising its plane detection performance (Precision: 96.8, Recall: 96.2, F-1 score: 96.5).

摘要

我们提出了一种名为多任务超声眼网(Multi-task SonoEyeNet)的新型多任务卷积神经网络,该网络利用超声检查医师在输入超声(US)视频帧上的注视跟踪数据来学习生成临床相关的视觉注意力图,以辅助标准化腹围(AC)平面检测。我们的架构由一个生成器和一个判别器组成,它们以对抗方式进行训练。生成器学习超声检查医师在给定US视频帧上的注意力,以预测帧标签(标准化AC平面/背景)。判别器通过鼓励预测的注意力图模仿真实的超声检查医师注意力图来进一步微调它。该新型模型通过在推理过程中消除对输入注视跟踪数据的需求,同时不影响其平面检测性能(精确率:96.8,召回率:96.2,F1分数:96.5),扩展了先前模型的潜在临床实用性。

相似文献

1
Multi-task SonoEyeNet: Detection of Fetal Standardized Planes Assisted by Generated Sonographer Attention Maps.
Med Image Comput Comput Assist Interv. 2018 Sep;11070:871-879. doi: 10.1007/978-3-030-00928-1_98. Epub 2018 Sep 26.
2
SonoEyeNet: Standardized Fetal Ultrasound Plane Detection Informed by Eye Tracking.
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:1475-1478. doi: 10.1109/ISBI.2018.8363851. Epub 2018 May 24.
3
Spatio-temporal visual attention modelling of standard biometry plane-finding navigation.
Med Image Anal. 2020 Oct;65:101762. doi: 10.1016/j.media.2020.101762. Epub 2020 Jun 20.
4
Gaze-assisted automatic captioning of fetal ultrasound videos using three-way multi-modal deep neural networks.
Med Image Anal. 2022 Nov;82:102630. doi: 10.1016/j.media.2022.102630. Epub 2022 Sep 17.
5
Ultrasound Image Representation Learning by Modeling Sonographer Visual Attention.
Inf Process Med Imaging. 2019 Jun;26:592-604. doi: 10.1007/978-3-030-20351-1_46. Epub 2019 May 22.
6
Centered Multi-Task Generative Adversarial Network for Small Object Detection.
Sensors (Basel). 2021 Jul 31;21(15):5194. doi: 10.3390/s21155194.
7
Discovering Salient Anatomical Landmarks by Predicting Human Gaze.
Proc IEEE Int Symp Biomed Imaging. 2020 Apr 3;2020:1711-1714. doi: 10.1109/ISBI45749.2020.9098505.
8
First Trimester Gaze Pattern Estimation Using Stochastic Augmentation Policy Search for Single Frame Saliency Prediction.
Med Image Underst Anal (2021). 2021 Jul;2021:361-374. doi: 10.1007/978-3-030-80432-9_28. Epub 2021 Jul 6.
9
4D-CT deformable image registration using multiscale unsupervised deep learning.
Phys Med Biol. 2020 Apr 20;65(8):085003. doi: 10.1088/1361-6560/ab79c4.
10
Skill Characterisation of Sonographer Gaze Patterns during Second Trimester Clinical Fetal Ultrasounds using Time Curves.
Proc Eye Track Res Appl Symp. 2022 Jun;2022. doi: 10.1145/3517031.3529637. Epub 2022 Jun 8.

引用本文的文献

2
Audio-visual modelling in a clinical setting.
Sci Rep. 2024 Jul 6;14(1):15569. doi: 10.1038/s41598-024-66160-4.
3
The Use of Machine Learning in Eye Tracking Studies in Medical Imaging: A Review.
IEEE J Biomed Health Inform. 2024 Jun;28(6):3597-3612. doi: 10.1109/JBHI.2024.3371893. Epub 2024 Jun 6.
4
Gaze-probe joint guidance with multi-task learning in obstetric ultrasound scanning.
Med Image Anal. 2023 Dec;90:102981. doi: 10.1016/j.media.2023.102981. Epub 2023 Sep 29.
5
Multimodal-GuideNet: Gaze-Probe Bidirectional Guidance in Obstetric Ultrasound Scanning.
Med Image Comput Comput Assist Interv. 2022 Sep 17;13437:94-103. doi: 10.1007/978-3-031-16449-1_10.
6
Visualising Spatio-Temporal Gaze Characteristics for Exploratory Data Analysis in Clinical Fetal Ultrasound Scans.
Proc Eye Track Res Appl Symp. 2022 Jun;2022. doi: 10.1145/3517031.3529635. Epub 2022 Jun 8.
7
Toward deep observation: A systematic survey on artificial intelligence techniques to monitor fetus via ultrasound images.
iScience. 2022 Jul 3;25(8):104713. doi: 10.1016/j.isci.2022.104713. eCollection 2022 Aug 19.
9
Self-Supervised Representation Learning for Ultrasound Video.
Proc IEEE Int Symp Biomed Imaging. 2020 Apr 3;2020:1847-1850. doi: 10.1109/ISBI45749.2020.9098666.
10
Discovering Salient Anatomical Landmarks by Predicting Human Gaze.
Proc IEEE Int Symp Biomed Imaging. 2020 Apr 3;2020:1711-1714. doi: 10.1109/ISBI45749.2020.9098505.

本文引用的文献

1
SonoEyeNet: Standardized Fetal Ultrasound Plane Detection Informed by Eye Tracking.
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:1475-1478. doi: 10.1109/ISBI.2018.8363851. Epub 2018 May 24.
2
What Do Different Evaluation Metrics Tell Us About Saliency Models?
IEEE Trans Pattern Anal Mach Intell. 2019 Mar;41(3):740-757. doi: 10.1109/TPAMI.2018.2815601. Epub 2018 Mar 13.
3
SonoNet: Real-Time Detection and Localisation of Fetal Standard Scan Planes in Freehand Ultrasound.
IEEE Trans Med Imaging. 2017 Nov;36(11):2204-2215. doi: 10.1109/TMI.2017.2712367. Epub 2017 Jul 11.
4
DeepFix: A Fully Convolutional Neural Network for Predicting Human Eye Fixations.
IEEE Trans Image Process. 2017 Sep;26(9):4446-4456. doi: 10.1109/TIP.2017.2710620.
5
Actions in the Eye: Dynamic Gaze Datasets and Learnt Saliency Models for Visual Recognition.
IEEE Trans Pattern Anal Mach Intell. 2015 Jul;37(7):1408-24. doi: 10.1109/TPAMI.2014.2366154.
6
Intra- and interobserver variability in fetal ultrasound measurements.
Ultrasound Obstet Gynecol. 2012 Mar;39(3):266-73. doi: 10.1002/uog.10082.
7
Outcomes of extremely low birth weight infants.
Pediatrics. 1996 Nov;98(5):931-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验