Cai Yifan, Sharma Harshita, Chatelain Pierre, Noble J Alison
Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK.
Med Image Comput Comput Assist Interv. 2018 Sep;11070:871-879. doi: 10.1007/978-3-030-00928-1_98. Epub 2018 Sep 26.
We present a novel multi-task convolutional neural network called Multi-task SonoEyeNet () that learns to generate clinically relevant visual attention maps using sonographer gaze tracking data on input ultrasound (US) video frames so as to assist standardized abdominal circumference (AC) plane detection. Our architecture consists of a generator and a discriminator, which are trained in an adversarial scheme. The generator learns sonographer attention on a given US video frame to predict the frame label (standardized AC plane / background). The discriminator further fine-tunes the predicted attention map by encouraging it to mimick the ground-truth sonographer attention map. The novel model expands the potential clinical usefulness of a previous model by eliminating the requirement of input gaze tracking data during inference without compromising its plane detection performance (Precision: 96.8, Recall: 96.2, F-1 score: 96.5).
我们提出了一种名为多任务超声眼网(Multi-task SonoEyeNet)的新型多任务卷积神经网络,该网络利用超声检查医师在输入超声(US)视频帧上的注视跟踪数据来学习生成临床相关的视觉注意力图,以辅助标准化腹围(AC)平面检测。我们的架构由一个生成器和一个判别器组成,它们以对抗方式进行训练。生成器学习超声检查医师在给定US视频帧上的注意力,以预测帧标签(标准化AC平面/背景)。判别器通过鼓励预测的注意力图模仿真实的超声检查医师注意力图来进一步微调它。该新型模型通过在推理过程中消除对输入注视跟踪数据的需求,同时不影响其平面检测性能(精确率:96.8,召回率:96.2,F1分数:96.5),扩展了先前模型的潜在临床实用性。