Suppr超能文献

局部角膜交联在照射治疗区域之外的生物力学影响。

Biomechanical Impact of Localized Corneal Cross-linking Beyond the Irradiated Treatment Area.

作者信息

Webb Joshua N, Langille Erin, Hafezi Farhad, Randleman J Bradley, Scarcelli Giuliano

出版信息

J Refract Surg. 2019 Apr 1;35(4):253-260. doi: 10.3928/1081597X-20190304-01.

Abstract

PURPOSE

To investigate the stiffening effect of localized corneal cross-linking (L-CXL) within and beyond the irradiated region in three dimensions.

METHODS

Ten porcine eyes were debrided of epithelium and incrementally soaked with 0.1% riboflavin solution. Using a customized, sharp-edged mask, half of the cornea was blocked while the other half was exposed to blue light (447 nm). The three-dimensional biomechanical properties of each cornea were then measured via Brillouin microscopy. An imaging system was used to quantify the optimal transition zone between cross-linked and non-cross-linked sections of the cornea when considering light propagation and scattering.

RESULTS

A broad transition zone of 610 µm in width was observed between the fully cross-linked and non-cross-linked sections, indicating the stiffening response extended beyond the irradiated region. Light propagation and the scattering induced by the riboflavin-soaked cornea accounted for a maximum of 25 and 159 ± 3.2 µm, respectively.

CONCLUSIONS

The stiffening effect of L-CXL extends beyond that of the irradiated area. When considering L-CXL protocols clinically, it will be important to account for increased stiffening in surrounding regions. [J Refract Surg. 2019;35(4):253-260.].

摘要

目的

在三维空间中研究局部角膜交联(L-CXL)在照射区域内外的强化效果。

方法

对10只猪眼进行上皮清创,并用0.1%核黄素溶液逐步浸润。使用定制的边缘锋利的遮罩,遮挡角膜的一半,同时另一半暴露于蓝光(447nm)下。然后通过布里渊显微镜测量每个角膜的三维生物力学特性。在考虑光传播和散射时,使用成像系统量化角膜交联区和非交联区之间的最佳过渡带。

结果

在完全交联和未交联的区域之间观察到一个宽度为610μm的宽过渡带,表明强化反应超出了照射区域。核黄素浸润角膜引起的光传播和散射分别最多占25μm和159±3.2μm。

结论

L-CXL的强化效果超出了照射区域。在临床考虑L-CXL方案时,考虑周围区域强化增加将很重要。[《屈光手术杂志》。2019;35(4):253 - 260。]

相似文献

1
Biomechanical Impact of Localized Corneal Cross-linking Beyond the Irradiated Treatment Area.
J Refract Surg. 2019 Apr 1;35(4):253-260. doi: 10.3928/1081597X-20190304-01.
2
An Algorithm to Predict the Biomechanical Stiffening Effect in Corneal Cross-linking.
J Refract Surg. 2017 Feb 1;33(2):128-136. doi: 10.3928/1081597X-20161206-01.
3
Influence of Microstructure on Stiffening Effects of Corneal Cross-linking Treatment.
J Refract Surg. 2018 Sep 1;34(9):622-627. doi: 10.3928/1081597X-20180718-01.
4
Changes in Corneal Biomechanical Properties With Different Corneal Cross-linking Irradiances.
J Refract Surg. 2018 Jan 1;34(1):51-58. doi: 10.3928/1081597X-20171025-01.
5
Effects of Thickness on Corneal Biomechanical Properties Using Optical Coherence Elastography.
Optom Vis Sci. 2018 Apr;95(4):299-308. doi: 10.1097/OPX.0000000000001193.
8
Repeated application of riboflavin during corneal cross-linking does not improve the biomechanical stiffening effect ex vivo.
Exp Eye Res. 2022 Nov;224:109267. doi: 10.1016/j.exer.2022.109267. Epub 2022 Sep 24.
9
Biomechanical efficacy of corneal cross-linking using hypoosmolar riboflavin solution.
Eur J Ophthalmol. 2019 Sep;29(5):474-481. doi: 10.1177/1120672118801130. Epub 2018 Sep 26.

引用本文的文献

1
Outcomes of localized corneal collagen crosslinking with a conventional device in progressive keratoconus.
Graefes Arch Clin Exp Ophthalmol. 2025 Mar 27. doi: 10.1007/s00417-025-06803-y.
3
The Utilization of Brillouin Microscopy in Corneal Diagnostics: A Systematic Review.
Cureus. 2024 Jul 30;16(7):e65769. doi: 10.7759/cureus.65769. eCollection 2024 Jul.
5
Advances in Imaging Technology of Anterior Segment of the Eye.
J Ophthalmol. 2021 Feb 23;2021:9539765. doi: 10.1155/2021/9539765. eCollection 2021.
6
Changes in Collagen Structure and Permeability of Rat and Human Sclera After Crosslinking.
Transl Vis Sci Technol. 2020 Aug 31;9(9):45. doi: 10.1167/tvst.9.9.45. eCollection 2020 Aug.
7
Detecting Mechanical Anisotropy of the Cornea Using Brillouin Microscopy.
Transl Vis Sci Technol. 2020 Jun 24;9(7):26. doi: 10.1167/tvst.9.7.26. eCollection 2020 Jun.
8
A review of imaging modalities for detecting early keratoconus.
Eye (Lond). 2021 Jan;35(1):173-187. doi: 10.1038/s41433-020-1039-1. Epub 2020 Jul 16.
9
Corneal Collagen Ordering After In Vivo Rose Bengal and Riboflavin Cross-Linking.
Invest Ophthalmol Vis Sci. 2020 Mar 9;61(3):28. doi: 10.1167/iovs.61.3.28.
10
Multifunctional synthetic Bowman's membrane-stromal biomimetic for corneal reconstruction.
Biomaterials. 2020 May;241:119880. doi: 10.1016/j.biomaterials.2020.119880. Epub 2020 Feb 14.

本文引用的文献

1
Mechanical outcome of accelerated corneal crosslinking evaluated by Brillouin microscopy.
J Cataract Refract Surg. 2017 Nov;43(11):1458-1463. doi: 10.1016/j.jcrs.2017.07.037.
2
Recent advances in corneal collagen cross-linking.
Indian J Ophthalmol. 2017 Sep;65(9):787-796. doi: 10.4103/ijo.IJO_648_17.
3
Customized Topography-Guided Corneal Collagen Cross-linking for Keratoconus.
J Refract Surg. 2017 May 1;33(5):290-297. doi: 10.3928/1081597X-20170201-02.
4
Refractive improvements and safety with topography-guided corneal crosslinking for keratoconus: 1-year results.
Br J Ophthalmol. 2017 Jul;101(7):920-925. doi: 10.1136/bjophthalmol-2016-309210. Epub 2016 Nov 29.
5
Effect of corneal light scatter on vision: a review of the literature.
Int J Ophthalmol. 2016 Mar 18;9(3):459-64. doi: 10.18240/ijo.2016.03.24. eCollection 2016.
6
Customized Corneal Cross-linking: One-Year Results.
Am J Ophthalmol. 2016 Jun;166:14-21. doi: 10.1016/j.ajo.2016.02.029. Epub 2016 Mar 2.
7
High Speed Sub-GHz Spectrometer for Brillouin Scattering Analysis.
J Vis Exp. 2015 Dec 22(106):e53468. doi: 10.3791/53468.
8
Global Survey of Corneal Transplantation and Eye Banking.
JAMA Ophthalmol. 2016 Feb;134(2):167-73. doi: 10.1001/jamaophthalmol.2015.4776.
9
Standard versus accelerated riboflavin-ultraviolet corneal collagen crosslinking: Resistance against enzymatic digestion.
J Cataract Refract Surg. 2015 Sep;41(9):1989-96. doi: 10.1016/j.jcrs.2015.10.004.
10
Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy.
Nat Methods. 2015 Dec;12(12):1132-4. doi: 10.1038/nmeth.3616. Epub 2015 Oct 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验