Wang Xiaokun, Majumdar Shoumyo, Soiberman Uri, Webb Joshua N, Chung Liam, Scarcelli Giuliano, Elisseeff Jennifer H
Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA.
Department of Ophthalmology, Johns Hopkins Hospital, Baltimore, MD, USA.
Biomaterials. 2020 May;241:119880. doi: 10.1016/j.biomaterials.2020.119880. Epub 2020 Feb 14.
As the outermost layer of the eye, the cornea is vulnerable to physical and chemical trauma, which can result in loss of transparency and lead to corneal blindness. Given the global corneal donor shortage, there is an unmet need for biocompatible corneal substitutes that have high transparency, mechanical integrity and regenerative potentials. Herein we engineered a dual-layered collagen vitrigel containing biomimetic synthetic Bowman's membrane (sBM) and stromal layer (sSL). The sBM supported rapid epithelial cell migration, maturation and multilayer formation, and the sSL containing tissue-derived extracellular matrix (ECM) microparticles presented a biomimetic lamellar ultrastructure mimicking the native corneal stroma. The incorporation of tissue-derived microparticles in sSL layer significantly enhanced the mechanical properties and suturability of the implant without compromising the transparency after vitrification. In vivo performance of the vitrigel in a rabbit anterior lamellar keratoplasty model showed full re-epithelialization within 14 days and integration of the vitrigel with the host tissue stroma by day 30. The migrated epithelial cells formed functional multilayer with limbal stem cell marker p63 K14 expressed in the lower layer, epithelial marker K3 and K12 expressed through the layers and tight junction protein ZO-1 expressed by the multilayers. Corneal fibroblasts migrated into the implants to facilitate host/implant integration and corneal stromal regeneration. In summary, these results suggest that the multi-functional layers of this novel collagen vitrigel exhibited significantly improved biological performance as corneal substitute by harnessing a fast re-epithelialization and stromal regeneration potential.
作为眼睛的最外层,角膜易受物理和化学创伤,这可能导致透明度丧失并导致角膜失明。鉴于全球角膜供体短缺,对具有高透明度、机械完整性和再生潜力的生物相容性角膜替代物存在未满足的需求。在此,我们设计了一种双层胶原玻璃体,其中包含仿生合成的Bowman膜(sBM)和基质层(sSL)。sBM支持上皮细胞快速迁移、成熟和多层形成,而包含组织衍生的细胞外基质(ECM)微粒的sSL呈现出模仿天然角膜基质的仿生层状超微结构。在sSL层中加入组织衍生的微粒显著增强了植入物的机械性能和可缝合性,同时在玻璃化后不影响透明度。在兔前板层角膜移植模型中玻璃体的体内性能显示,14天内完全重新上皮化,到第30天玻璃体与宿主组织基质整合。迁移的上皮细胞形成功能性多层结构,下层表达角膜缘干细胞标志物p63 K14,各层表达上皮标志物K3和K12,多层表达紧密连接蛋白ZO-1。角膜成纤维细胞迁移到植入物中,以促进宿主/植入物整合和角膜基质再生。总之,这些结果表明,这种新型胶原玻璃体的多功能层通过利用快速重新上皮化和基质再生潜力,作为角膜替代物表现出显著改善的生物学性能。