Suppr超能文献

小分子靶向致癌性 FTO 去甲基酶在急性髓系白血病中的作用。

Small-Molecule Targeting of Oncogenic FTO Demethylase in Acute Myeloid Leukemia.

机构信息

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, Beijing 100049, China.

Department of Systems Biology and Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA; Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA.

出版信息

Cancer Cell. 2019 Apr 15;35(4):677-691.e10. doi: 10.1016/j.ccell.2019.03.006.

Abstract

FTO, an mRNA N-methyladenosine (mA) demethylase, was reported to promote leukemogenesis. Using structure-based rational design, we have developed two promising FTO inhibitors, namely FB23 and FB23-2, which directly bind to FTO and selectively inhibit FTO's mA demethylase activity. Mimicking FTO depletion, FB23-2 dramatically suppresses proliferation and promotes the differentiation/apoptosis of human acute myeloid leukemia (AML) cell line cells and primary blast AML cells in vitro. Moreover, FB23-2 significantly inhibits the progression of human AML cell lines and primary cells in xeno-transplanted mice. Collectively, our data suggest that FTO is a druggable target and that targeting FTO by small-molecule inhibitors holds potential to treat AML.

摘要

FTO 是一种 mRNA N6-甲基腺嘌呤(mA)去甲基酶,据报道可促进白血病发生。我们基于结构的合理设计开发了两种有前途的 FTO 抑制剂,即 FB23 和 FB23-2,它们可直接与 FTO 结合并选择性抑制 FTO 的 mA 去甲基酶活性。模拟 FTO 耗竭,FB23-2 可显著抑制人急性髓系白血病(AML)细胞系和原代爆发性 AML 细胞的增殖,并促进其分化/凋亡。此外,FB23-2 还可显著抑制异种移植小鼠中人类 AML 细胞系和原代细胞的进展。总的来说,我们的数据表明 FTO 是一个可成药的靶点,通过小分子抑制剂靶向 FTO 具有治疗 AML 的潜力。

相似文献

1
Small-Molecule Targeting of Oncogenic FTO Demethylase in Acute Myeloid Leukemia.
Cancer Cell. 2019 Apr 15;35(4):677-691.e10. doi: 10.1016/j.ccell.2019.03.006.
2
Saikosaponin D exhibits anti-leukemic activity by targeting FTO/mA signaling.
Theranostics. 2021 Mar 31;11(12):5831-5846. doi: 10.7150/thno.55574. eCollection 2021.
3
R-2-hydroxyglutarate attenuates aerobic glycolysis in leukemia by targeting the FTO/mA/PFKP/LDHB axis.
Mol Cell. 2021 Mar 4;81(5):922-939.e9. doi: 10.1016/j.molcel.2020.12.026.
4
Chemical Inhibitors Targeting the Oncogenic mA Modifying Proteins.
Acc Chem Res. 2023 Nov 7;56(21):3010-3022. doi: 10.1021/acs.accounts.3c00451. Epub 2023 Oct 27.
5
Structure-Activity Relationships and Antileukemia Effects of the Tricyclic Benzoic Acid FTO Inhibitors.
J Med Chem. 2022 Aug 11;65(15):10638-10654. doi: 10.1021/acs.jmedchem.2c00848. Epub 2022 Jul 6.
6
Therapeutic potential of GSK-J4, a histone demethylase KDM6B/JMJD3 inhibitor, for acute myeloid leukemia.
J Cancer Res Clin Oncol. 2018 Jun;144(6):1065-1077. doi: 10.1007/s00432-018-2631-7. Epub 2018 Mar 28.
7
Structural characteristics of small-molecule inhibitors targeting demethylase.
Future Med Chem. 2021 Sep;13(17):1475-1489. doi: 10.4155/fmc-2021-0132. Epub 2021 Jul 9.
8
Rhein exerts anti-multidrug resistance in acute myeloid leukemia via targeting FTO to inhibit AKT/mTOR.
Anticancer Drugs. 2024 Aug 1;35(7):597-605. doi: 10.1097/CAD.0000000000001608. Epub 2024 May 7.
9
Rational Design of RNA Demethylase FTO Inhibitors with Enhanced Antileukemia Drug-Like Properties.
J Med Chem. 2023 Jul 27;66(14):9731-9752. doi: 10.1021/acs.jmedchem.3c00543. Epub 2023 Jul 7.
10
FTO Plays an Oncogenic Role in Acute Myeloid Leukemia as a N-Methyladenosine RNA Demethylase.
Cancer Cell. 2017 Jan 9;31(1):127-141. doi: 10.1016/j.ccell.2016.11.017. Epub 2016 Dec 22.

引用本文的文献

1
RNA modification systems as therapeutic targets.
Nat Rev Drug Discov. 2025 Sep 17. doi: 10.1038/s41573-025-01280-8.
2
RNA Modifications in Health and Disease.
MedComm (2020). 2025 Sep 3;6(9):e70341. doi: 10.1002/mco2.70341. eCollection 2025 Sep.
3
mA-driven transcriptomic rewiring in tumor immune surveillance.
J Immunother Cancer. 2025 Sep 3;13(9):e012744. doi: 10.1136/jitc-2025-012744.
4
Emerging implications of N6-methyladenosine in prostate cancer progression and treatment.
Cell Death Discov. 2025 Aug 19;11(1):391. doi: 10.1038/s41420-025-02680-w.
5
Small-molecule and peptide inhibitors of m6A regulators.
Front Oncol. 2025 Aug 1;15:1629864. doi: 10.3389/fonc.2025.1629864. eCollection 2025.
6
FTO degrader impairs ribosome biogenesis and protein translation in acute myeloid leukemia.
Sci Adv. 2025 Aug 15;11(33):eadv7648. doi: 10.1126/sciadv.adv7648.
8
Development of a prognostic model based on m6A reader upregulation and immune infiltration in multiple malignant tumors.
Transl Cancer Res. 2025 Jul 30;14(7):4219-4242. doi: 10.21037/tcr-2024-2616. Epub 2025 Jul 27.
9
Role of m6A RNA methylation regulators in pancreatic cancer: interactions and potential implications.
Cancer Cell Int. 2025 Aug 4;25(1):292. doi: 10.1186/s12935-025-03922-8.

本文引用的文献

1
Cap-specific, terminal N-methylation by a mammalian mAm methyltransferase.
Cell Res. 2019 Jan;29(1):80-82. doi: 10.1038/s41422-018-0117-4. Epub 2018 Nov 28.
2
Cap-specific terminal -methylation of RNA by an RNA polymerase II-associated methyltransferase.
Science. 2019 Jan 11;363(6423). doi: 10.1126/science.aav0080. Epub 2018 Nov 22.
3
A dynamic N-methyladenosine methylome regulates intrinsic and acquired resistance to tyrosine kinase inhibitors.
Cell Res. 2018 Nov;28(11):1062-1076. doi: 10.1038/s41422-018-0097-4. Epub 2018 Oct 8.
4
Differential mA, mA, and mA Demethylation Mediated by FTO in the Cell Nucleus and Cytoplasm.
Mol Cell. 2018 Sep 20;71(6):973-985.e5. doi: 10.1016/j.molcel.2018.08.011. Epub 2018 Sep 6.
5
RNA N-methyladenosine modification in cancers: current status and perspectives.
Cell Res. 2018 May;28(5):507-517. doi: 10.1038/s41422-018-0034-6. Epub 2018 Apr 23.
7
Recognition of RNA N-methyladenosine by IGF2BP proteins enhances mRNA stability and translation.
Nat Cell Biol. 2018 Mar;20(3):285-295. doi: 10.1038/s41556-018-0045-z. Epub 2018 Feb 23.
8
METTL14 Inhibits Hematopoietic Stem/Progenitor Differentiation and Promotes Leukemogenesis via mRNA mA Modification.
Cell Stem Cell. 2018 Feb 1;22(2):191-205.e9. doi: 10.1016/j.stem.2017.11.016. Epub 2017 Dec 28.
9
R-2HG Exhibits Anti-tumor Activity by Targeting FTO/mA/MYC/CEBPA Signaling.
Cell. 2018 Jan 11;172(1-2):90-105.e23. doi: 10.1016/j.cell.2017.11.031. Epub 2017 Dec 14.
10
Dynamic m6A modification regulates local translation of mRNA in axons.
Nucleic Acids Res. 2018 Feb 16;46(3):1412-1423. doi: 10.1093/nar/gkx1182.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验