Suppr超能文献

MetaMSD:质谱数据的荟萃分析

MetaMSD: meta analysis for mass spectrometry data.

作者信息

Ryu So Young, Wendt George A

机构信息

School of Community Health Sciences, University of Nevada - Reno, Reno, NV, United States of America.

Department of Epidemiology, University of California, Berkeley, Berkeley, CA, United States of America.

出版信息

PeerJ. 2019 Apr 10;7:e6699. doi: 10.7717/peerj.6699. eCollection 2019.

Abstract

Mass spectrometry-based proteomics facilitate disease understanding by providing protein abundance information about disease progression. For the same type of disease studies, multiple mass spectrometry datasets may be generated. Integrating multiple mass spectrometry datasets can provide valuable information that a single dataset analysis cannot provide. In this article, we introduce a meta-analysis software, MetaMSD (Meta Analysis for Mass Spectrometry Data) that is specifically designed for mass spectrometry data. Using Stouffer's or Pearson's test, MetaMSD detects significantly more differential proteins than the analysis based on the single best experiment. We demonstrate the performance of MetaMSD using simulated data, urinary proteomic data of kidney transplant patients, and breast cancer proteomic data. Noting the common practice of performing a pilot study prior to a main study, this software will help proteomics researchers fully utilize the benefit of multiple studies (or datasets), thus optimizing biomarker discovery. MetaMSD is a command line tool that automatically outputs various graphs and differential proteins with confidence scores. It is implemented in R and is freely available for public use at https://github.com/soyoungryu/MetaMSD. The user manual and data are available at the site. The user manual is written in such a way that scientists who are not familiar with R software can use MetaMSD.

摘要

基于质谱的蛋白质组学通过提供有关疾病进展的蛋白质丰度信息,有助于加深对疾病的理解。对于同一类型的疾病研究,可能会生成多个质谱数据集。整合多个质谱数据集可以提供单个数据集分析无法提供的有价值信息。在本文中,我们介绍了一种专门为质谱数据设计的元分析软件MetaMSD(质谱数据元分析)。使用斯托弗检验或皮尔逊检验,MetaMSD检测到的差异蛋白质比基于单个最佳实验的分析显著更多。我们使用模拟数据、肾移植患者的尿液蛋白质组数据和乳腺癌蛋白质组数据展示了MetaMSD的性能。考虑到在主要研究之前进行预实验的常见做法,该软件将帮助蛋白质组学研究人员充分利用多项研究(或数据集)的优势,从而优化生物标志物的发现。MetaMSD是一个命令行工具,它会自动输出各种图表以及带有置信度分数的差异蛋白质。它是用R语言实现的,可在https://github.com/soyoungryu/MetaMSD上免费供公众使用。该网站提供用户手册和数据。用户手册的编写方式使得不熟悉R软件的科学家也能使用MetaMSD。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2085/6462182/faaa2980889d/peerj-07-6699-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验